(* Title: HOL/Tools/reification.ML Author: Amine Chaieb, TU Muenchen A trial for automatical reification. *) signature REIFICATION = sig val conv: Proof.context -> thm list -> conv val tac: Proof.context -> thm list -> term option -> int -> tactic val lift_conv: Proof.context -> conv -> term option -> int -> tactic val dereify: Proof.context -> thm list -> conv end; structure Reification : REIFICATION = struct fun dest_listT (Type (\<^type_name>\list\, [T])) = T; val FWD = curry (op OF); fun rewrite_with ctxt eqs = Simplifier.rewrite (put_simpset HOL_basic_ss ctxt addsimps eqs); val pure_subst = @{lemma "x == y ==> PROP P y ==> PROP P x" by simp} fun lift_conv ctxt conv some_t = Subgoal.FOCUS (fn {context = ctxt', concl, ...} => let val ct = (case some_t of NONE => Thm.dest_arg concl | SOME t => Thm.cterm_of ctxt' t) val thm = conv ct; in if Thm.is_reflexive thm then no_tac else ALLGOALS (resolve_tac ctxt [pure_subst OF [thm]]) end) ctxt; (* Make a congruence rule out of a defining equation for the interpretation th is one defining equation of f, i.e. th is "f (Cp ?t1 ... ?tn) = P(f ?t1, .., f ?tn)" Cp is a constructor pattern and P is a pattern The result is: [|?A1 = f ?t1 ; .. ; ?An= f ?tn |] ==> P (?A1, .., ?An) = f (Cp ?t1 .. ?tn) + the a list of names of the A1 .. An, Those are fresh in the ctxt *) fun mk_congeq ctxt fs th = let val Const (fN, _) = th |> Thm.prop_of |> HOLogic.dest_Trueprop |> HOLogic.dest_eq |> fst |> strip_comb |> fst; val ((_, [th']), ctxt') = Variable.import true [th] ctxt; val (lhs, rhs) = HOLogic.dest_eq (HOLogic.dest_Trueprop (Thm.prop_of th')); fun add_fterms (t as t1 $ t2) = if exists (fn f => Term.could_unify (t |> strip_comb |> fst, f)) fs then insert (op aconv) t else add_fterms t1 #> add_fterms t2 | add_fterms (t as Abs _) = if exists_Const (fn (c, _) => c = fN) t then K [t] else K [] | add_fterms _ = I; val fterms = add_fterms rhs []; val (xs, ctxt'') = Variable.variant_fixes (replicate (length fterms) "x") ctxt'; val tys = map fastype_of fterms; val vs = map Free (xs ~~ tys); val env = fterms ~~ vs; (*FIXME*) fun replace_fterms (t as t1 $ t2) = (case AList.lookup (op aconv) env t of SOME v => v | NONE => replace_fterms t1 $ replace_fterms t2) | replace_fterms t = (case AList.lookup (op aconv) env t of SOME v => v | NONE => t); fun mk_def (Abs (x, xT, t), v) = HOLogic.mk_Trueprop (HOLogic.all_const xT $ Abs (x, xT, HOLogic.mk_eq (v $ Bound 0, t))) | mk_def (t, v) = HOLogic.mk_Trueprop (HOLogic.mk_eq (v, t)); fun tryext x = (x RS @{lemma "(\x. f x = g x) \ f = g" by blast} handle THM _ => x); val cong = (Goal.prove ctxt'' [] (map mk_def env) (HOLogic.mk_Trueprop (HOLogic.mk_eq (lhs, replace_fterms rhs))) (fn {context, prems, ...} => Local_Defs.unfold0_tac context (map tryext prems) THEN resolve_tac ctxt'' [th'] 1)) RS sym; val (cong' :: vars') = Variable.export ctxt'' ctxt (cong :: map (Drule.mk_term o Thm.cterm_of ctxt'') vs); val vs' = map (fst o fst o Term.dest_Var o Thm.term_of o Drule.dest_term) vars'; in (vs', cong') end; (* congs is a list of pairs (P,th) where th is a theorem for [| f p1 = A1; ...; f pn = An|] ==> f (C p1 .. pn) = P *) fun rearrange congs = let fun P (_, th) = let val \<^term>\Trueprop\ $ (Const (\<^const_name>\HOL.eq\, _) $ l $ _) = Thm.concl_of th in can dest_Var l end; val (yes, no) = List.partition P congs; in no @ yes end; fun dereify ctxt eqs = rewrite_with ctxt (eqs @ @{thms nth_Cons_0 nth_Cons_Suc}); fun index_of t bds = let val tt = HOLogic.listT (fastype_of t); in (case AList.lookup Type.could_unify bds tt of NONE => error "index_of: type not found in environements!" | SOME (tbs, tats) => let val i = find_index (fn t' => t' = t) tats; val j = find_index (fn t' => t' = t) tbs; in if j = ~1 then if i = ~1 then (length tbs + length tats, AList.update Type.could_unify (tt, (tbs, tats @ [t])) bds) else (i, bds) else (j, bds) end) end; (* Generic decomp for reification : matches the actual term with the rhs of one cong rule. The result of the matching guides the proof synthesis: The matches of the introduced Variables A1 .. An are processed recursively The rest is instantiated in the cong rule,i.e. no reification is needed *) (* da is the decomposition for atoms, ie. it returns ([],g) where g returns the right instance f (AtC n) = t , where AtC is the Atoms constructor and n is the number of the atom corresponding to t *) fun decomp_reify da cgns (ct, ctxt) bds = let val thy = Proof_Context.theory_of ctxt; fun tryabsdecomp (ct, ctxt) bds = (case Thm.term_of ct of Abs (_, xT, ta) => let val ([raw_xn], ctxt') = Variable.variant_fixes ["x"] ctxt; val (xn, ta) = Syntax_Trans.variant_abs (raw_xn, xT, ta); (* FIXME !? *) val x = Free (xn, xT); val cx = Thm.cterm_of ctxt' x; val cta = Thm.cterm_of ctxt' ta; val bds = (case AList.lookup Type.could_unify bds (HOLogic.listT xT) of NONE => error "tryabsdecomp: Type not found in the Environement" | SOME (bsT, atsT) => AList.update Type.could_unify (HOLogic.listT xT, (x :: bsT, atsT)) bds); in (([(cta, ctxt')], fn ([th], bds) => (hd (Variable.export ctxt' ctxt [(Thm.forall_intr cx th) COMP allI]), let val (bsT, asT) = the (AList.lookup Type.could_unify bds (HOLogic.listT xT)); in AList.update Type.could_unify (HOLogic.listT xT, (tl bsT, asT)) bds end)), bds) end | _ => da (ct, ctxt) bds) in (case cgns of [] => tryabsdecomp (ct, ctxt) bds | ((vns, cong) :: congs) => (let val (tyenv, tmenv) = Pattern.match thy ((fst o HOLogic.dest_eq o HOLogic.dest_Trueprop) (Thm.concl_of cong), Thm.term_of ct) (Vartab.empty, Vartab.empty); val (fnvs, invs) = List.partition (fn ((vn, _),_) => member (op =) vns vn) (Vartab.dest tmenv); val (fts, its) = (map (snd o snd) fnvs, map (fn ((vn, vi), (tT, t)) => (((vn, vi), tT), Thm.cterm_of ctxt t)) invs); val ctyenv = map (fn ((vn, vi), (s, ty)) => (((vn, vi), s), Thm.ctyp_of ctxt ty)) (Vartab.dest tyenv); in ((map (Thm.cterm_of ctxt) fts ~~ replicate (length fts) ctxt, apfst (FWD (Drule.instantiate_normalize (ctyenv, its) cong))), bds) end handle Pattern.MATCH => decomp_reify da congs (ct, ctxt) bds)) end; fun get_nths (t as (Const (\<^const_name>\List.nth\, _) $ vs $ n)) = AList.update (op aconv) (t, (vs, n)) | get_nths (t1 $ t2) = get_nths t1 #> get_nths t2 | get_nths (Abs (_, _, t')) = get_nths t' | get_nths _ = I; fun tryeqs [] (ct, ctxt) bds = error "Cannot find the atoms equation" | tryeqs (eq :: eqs) (ct, ctxt) bds = (( let val rhs = eq |> Thm.prop_of |> HOLogic.dest_Trueprop |> HOLogic.dest_eq |> snd; val nths = get_nths rhs []; val (vss, _) = fold_rev (fn (_, (vs, n)) => fn (vss, ns) => (insert (op aconv) vs vss, insert (op aconv) n ns)) nths ([], []); val (vsns, ctxt') = Variable.variant_fixes (replicate (length vss) "vs") ctxt; val (xns, ctxt'') = Variable.variant_fixes (replicate (length nths) "x") ctxt'; val thy = Proof_Context.theory_of ctxt''; val vsns_map = vss ~~ vsns; val xns_map = fst (split_list nths) ~~ xns; val subst = map (fn (nt, xn) => (nt, Var ((xn, 0), fastype_of nt))) xns_map; val rhs_P = subst_free subst rhs; val (tyenv, tmenv) = Pattern.match thy (rhs_P, Thm.term_of ct) (Vartab.empty, Vartab.empty); val sbst = Envir.subst_term (tyenv, tmenv); val sbsT = Envir.subst_type tyenv; val subst_ty = map (fn (n, (s, t)) => ((n, s), Thm.ctyp_of ctxt'' t)) (Vartab.dest tyenv) val tml = Vartab.dest tmenv; val (subst_ns, bds) = fold_map (fn (Const _ $ _ $ n, Var (xn0, _)) => fn bds => let val name = snd (the (AList.lookup (op =) tml xn0)); val (idx, bds) = index_of name bds; in (apply2 (Thm.cterm_of ctxt'') (n, idx |> HOLogic.mk_nat), bds) end) subst bds; val subst_vs = let fun h (Const _ $ (vs as Var (_, lT)) $ _, Var (_, T)) = let val cns = sbst (Const (\<^const_name>\List.Cons\, T --> lT --> lT)); val lT' = sbsT lT; val (bsT, _) = the (AList.lookup Type.could_unify bds lT); val vsn = the (AList.lookup (op =) vsns_map vs); val vs' = fold_rev (fn x => fn xs => cns $ x $xs) bsT (Free (vsn, lT')); in apply2 (Thm.cterm_of ctxt'') (vs, vs') end; in map h subst end; val cts = map (fn ((vn, vi), (tT, t)) => apply2 (Thm.cterm_of ctxt'') (Var ((vn, vi), tT), t)) (fold (AList.delete (fn (((a : string), _), (b, _)) => a = b)) (map (fn n => (n, 0)) xns) tml); val substt = let val ih = Drule.cterm_rule (Thm.instantiate (subst_ty, [])); in map (apply2 ih) (subst_ns @ subst_vs @ cts) end; val th = (Drule.instantiate_normalize (subst_ty, map (apfst (dest_Var o Thm.term_of)) substt) eq) RS sym; in (hd (Variable.export ctxt'' ctxt [th]), bds) end) handle Pattern.MATCH => tryeqs eqs (ct, ctxt) bds); (* looks for the atoms equation and instantiates it with the right number *) fun mk_decompatom eqs (ct, ctxt) bds = (([], fn (_, bds) => let val tT = fastype_of (Thm.term_of ct); fun isat eq = let val rhs = eq |> Thm.prop_of |> HOLogic.dest_Trueprop |> HOLogic.dest_eq |> snd; in exists_Const (fn (n, ty) => n = \<^const_name>\List.nth\ andalso AList.defined Type.could_unify bds (domain_type ty)) rhs andalso Type.could_unify (fastype_of rhs, tT) end; in tryeqs (filter isat eqs) (ct, ctxt) bds end), bds); (* Generic reification procedure: *) (* creates all needed cong rules and then just uses the theorem synthesis *) fun mk_congs ctxt eqs = let val fs = fold_rev (fn eq => insert (op =) (eq |> Thm.prop_of |> HOLogic.dest_Trueprop |> HOLogic.dest_eq |> fst |> strip_comb |> fst)) eqs []; val tys = fold_rev (fn f => fold (insert (op =)) (f |> fastype_of |> binder_types |> tl)) fs []; val (vs, ctxt') = Variable.variant_fixes (replicate (length tys) "vs") ctxt; val subst = the o AList.lookup (op =) (map2 (fn T => fn v => (T, Thm.cterm_of ctxt' (Free (v, T)))) tys vs); fun prep_eq eq = let val (_, _ :: vs) = eq |> Thm.prop_of |> HOLogic.dest_Trueprop |> HOLogic.dest_eq |> fst |> strip_comb; val subst = map_filter (fn Var v => SOME (v, subst (#2 v)) | _ => NONE) vs; in Thm.instantiate ([], subst) eq end; val (ps, congs) = map_split (mk_congeq ctxt' fs o prep_eq) eqs; val bds = AList.make (K ([], [])) tys; in (ps ~~ Variable.export ctxt' ctxt congs, bds) end fun conv ctxt eqs ct = let val (congs, bds) = mk_congs ctxt eqs; val congs = rearrange congs; val (th, bds') = apfst mk_eq (divide_and_conquer' (decomp_reify (mk_decompatom eqs) congs) (ct, ctxt) bds); fun is_list_var (Var (_, t)) = can dest_listT t | is_list_var _ = false; val vars = th |> Thm.prop_of |> Logic.dest_equals |> snd |> strip_comb |> snd |> filter is_list_var; val vs = map (fn Var (v as (_, T)) => (v, the (AList.lookup Type.could_unify bds' T) |> snd |> HOLogic.mk_list (dest_listT T))) vars; val th' = Drule.instantiate_normalize ([], map (apsnd (Thm.cterm_of ctxt)) vs) th; val th'' = Thm.symmetric (dereify ctxt [] (Thm.lhs_of th')); in Thm.transitive th'' th' end; fun tac ctxt eqs = lift_conv ctxt (conv ctxt eqs); end;