(* Title: HOL/Tools/Transfer/transfer.ML Author: Brian Huffman, TU Muenchen Author: Ondrej Kuncar, TU Muenchen Generic theorem transfer method. *) signature TRANSFER = sig type pred_data val mk_pred_data: thm -> thm -> thm list -> pred_data val rel_eq_onp: pred_data -> thm val pred_def: pred_data -> thm val pred_simps: pred_data -> thm list val update_pred_simps: thm list -> pred_data -> pred_data val bottom_rewr_conv: thm list -> conv val top_rewr_conv: thm list -> conv val top_sweep_rewr_conv: thm list -> conv val prep_conv: conv val fold_relator_eqs_conv: Proof.context -> conv val unfold_relator_eqs_conv: Proof.context -> conv val get_transfer_raw: Proof.context -> thm list val get_relator_eq: Proof.context -> thm list val retrieve_relator_eq: Proof.context -> term -> thm list val get_sym_relator_eq: Proof.context -> thm list val get_relator_eq_raw: Proof.context -> thm list val get_relator_domain: Proof.context -> thm list val morph_pred_data: morphism -> pred_data -> pred_data val lookup_pred_data: Proof.context -> string -> pred_data option val update_pred_data: string -> pred_data -> Context.generic -> Context.generic val is_compound_lhs: Proof.context -> term -> bool val is_compound_rhs: Proof.context -> term -> bool val transfer_add: attribute val transfer_del: attribute val transfer_raw_add: thm -> Context.generic -> Context.generic val transfer_raw_del: thm -> Context.generic -> Context.generic val transferred_attribute: thm list -> attribute val untransferred_attribute: thm list -> attribute val prep_transfer_domain_thm: Proof.context -> thm -> thm val transfer_domain_add: attribute val transfer_domain_del: attribute val transfer_rule_of_term: Proof.context -> bool -> term -> thm val transfer_rule_of_lhs: Proof.context -> term -> thm val eq_tac: Proof.context -> int -> tactic val transfer_start_tac: bool -> Proof.context -> int -> tactic val transfer_prover_start_tac: Proof.context -> int -> tactic val transfer_step_tac: Proof.context -> int -> tactic val transfer_end_tac: Proof.context -> int -> tactic val transfer_prover_end_tac: Proof.context -> int -> tactic val transfer_tac: bool -> Proof.context -> int -> tactic val transfer_prover_tac: Proof.context -> int -> tactic val gen_frees_tac: (string * typ) list -> Proof.context -> int -> tactic end structure Transfer : TRANSFER = struct fun bottom_rewr_conv rewrs = Conv.bottom_conv (K (Conv.try_conv (Conv.rewrs_conv rewrs))) \<^context> fun top_rewr_conv rewrs = Conv.top_conv (K (Conv.try_conv (Conv.rewrs_conv rewrs))) \<^context> fun top_sweep_rewr_conv rewrs = Conv.top_sweep_conv (K (Conv.rewrs_conv rewrs)) \<^context> (** Theory Data **) val compound_xhs_empty_net = Item_Net.init (Thm.eq_thm_prop o apply2 snd) (single o fst); val rewr_rules = Item_Net.init Thm.eq_thm_prop (single o fst o HOLogic.dest_eq o HOLogic.dest_Trueprop o Thm.concl_of); datatype pred_data = PRED_DATA of {pred_def: thm, rel_eq_onp: thm, pred_simps: thm list} fun mk_pred_data pred_def rel_eq_onp pred_simps = PRED_DATA {pred_def = pred_def, rel_eq_onp = rel_eq_onp, pred_simps = pred_simps} fun map_pred_data' f1 f2 f3 (PRED_DATA {pred_def, rel_eq_onp, pred_simps}) = PRED_DATA {pred_def = f1 pred_def, rel_eq_onp = f2 rel_eq_onp, pred_simps = f3 pred_simps} fun rep_pred_data (PRED_DATA p) = p val rel_eq_onp = #rel_eq_onp o rep_pred_data val pred_def = #pred_def o rep_pred_data val pred_simps = #pred_simps o rep_pred_data fun update_pred_simps new_pred_data = map_pred_data' I I (K new_pred_data) structure Data = Generic_Data ( type T = { transfer_raw : thm Item_Net.T, known_frees : (string * typ) list, compound_lhs : (term * thm) Item_Net.T, compound_rhs : (term * thm) Item_Net.T, relator_eq : thm Item_Net.T, relator_eq_raw : thm Item_Net.T, relator_domain : thm Item_Net.T, pred_data : pred_data Symtab.table } val empty = { transfer_raw = Thm.intro_rules, known_frees = [], compound_lhs = compound_xhs_empty_net, compound_rhs = compound_xhs_empty_net, relator_eq = rewr_rules, relator_eq_raw = Thm.full_rules, relator_domain = Thm.full_rules, pred_data = Symtab.empty } val extend = I fun merge ( { transfer_raw = t1, known_frees = k1, compound_lhs = l1, compound_rhs = c1, relator_eq = r1, relator_eq_raw = rw1, relator_domain = rd1, pred_data = pd1 }, { transfer_raw = t2, known_frees = k2, compound_lhs = l2, compound_rhs = c2, relator_eq = r2, relator_eq_raw = rw2, relator_domain = rd2, pred_data = pd2 } ) = { transfer_raw = Item_Net.merge (t1, t2), known_frees = Library.merge (op =) (k1, k2), compound_lhs = Item_Net.merge (l1, l2), compound_rhs = Item_Net.merge (c1, c2), relator_eq = Item_Net.merge (r1, r2), relator_eq_raw = Item_Net.merge (rw1, rw2), relator_domain = Item_Net.merge (rd1, rd2), pred_data = Symtab.merge (K true) (pd1, pd2) } ) fun get_net_content f ctxt = Item_Net.content (f (Data.get (Context.Proof ctxt))) |> map (Thm.transfer' ctxt) val get_transfer_raw = get_net_content #transfer_raw val get_known_frees = #known_frees o Data.get o Context.Proof fun is_compound f ctxt t = Item_Net.retrieve (f (Data.get (Context.Proof ctxt))) t |> exists (fn (pat, _) => Pattern.matches (Proof_Context.theory_of ctxt) (pat, t)); val is_compound_lhs = is_compound #compound_lhs val is_compound_rhs = is_compound #compound_rhs val get_relator_eq = get_net_content #relator_eq #> map safe_mk_meta_eq fun retrieve_relator_eq ctxt t = Item_Net.retrieve (#relator_eq (Data.get (Context.Proof ctxt))) t |> map (Thm.transfer' ctxt) val get_sym_relator_eq = get_net_content #relator_eq #> map (safe_mk_meta_eq #> Thm.symmetric) val get_relator_eq_raw = get_net_content #relator_eq_raw val get_relator_domain = get_net_content #relator_domain val get_pred_data = #pred_data o Data.get o Context.Proof fun map_data f1 f2 f3 f4 f5 f6 f7 f8 { transfer_raw, known_frees, compound_lhs, compound_rhs, relator_eq, relator_eq_raw, relator_domain, pred_data } = { transfer_raw = f1 transfer_raw, known_frees = f2 known_frees, compound_lhs = f3 compound_lhs, compound_rhs = f4 compound_rhs, relator_eq = f5 relator_eq, relator_eq_raw = f6 relator_eq_raw, relator_domain = f7 relator_domain, pred_data = f8 pred_data } fun map_transfer_raw f = map_data f I I I I I I I fun map_known_frees f = map_data I f I I I I I I fun map_compound_lhs f = map_data I I f I I I I I fun map_compound_rhs f = map_data I I I f I I I I fun map_relator_eq f = map_data I I I I f I I I fun map_relator_eq_raw f = map_data I I I I I f I I fun map_relator_domain f = map_data I I I I I I f I fun map_pred_data f = map_data I I I I I I I f val add_transfer_thm = Thm.trim_context #> (fn thm => Data.map (map_transfer_raw (Item_Net.update thm) o map_compound_lhs (case HOLogic.dest_Trueprop (Thm.concl_of thm) of Const (\<^const_name>\Rel\, _) $ _ $ (lhs as (_ $ _)) $ _ => Item_Net.update (lhs, thm) | _ => I) o map_compound_rhs (case HOLogic.dest_Trueprop (Thm.concl_of thm) of Const (\<^const_name>\Rel\, _) $ _ $ _ $ (rhs as (_ $ _)) => Item_Net.update (rhs, thm) | _ => I) o map_known_frees (Term.add_frees (Thm.concl_of thm)))) fun del_transfer_thm thm = Data.map (map_transfer_raw (Item_Net.remove thm) o map_compound_lhs (case HOLogic.dest_Trueprop (Thm.concl_of thm) of Const (\<^const_name>\Rel\, _) $ _ $ (lhs as (_ $ _)) $ _ => Item_Net.remove (lhs, thm) | _ => I) o map_compound_rhs (case HOLogic.dest_Trueprop (Thm.concl_of thm) of Const (\<^const_name>\Rel\, _) $ _ $ _ $ (rhs as (_ $ _)) => Item_Net.remove (rhs, thm) | _ => I)) fun transfer_raw_add thm ctxt = add_transfer_thm thm ctxt fun transfer_raw_del thm ctxt = del_transfer_thm thm ctxt (** Conversions **) fun transfer_rel_conv conv = Conv.concl_conv ~1 (HOLogic.Trueprop_conv (Conv.fun2_conv (Conv.arg_conv conv))) val Rel_rule = Thm.symmetric @{thm Rel_def} fun Rel_conv ct = let val (cT, cT') = Thm.dest_funT (Thm.ctyp_of_cterm ct) val (cU, _) = Thm.dest_funT cT' in Thm.instantiate' [SOME cT, SOME cU] [SOME ct] Rel_rule end (* Conversion to preprocess a transfer rule *) fun safe_Rel_conv ct = Conv.try_conv (HOLogic.Trueprop_conv (Conv.fun_conv (Conv.fun_conv Rel_conv))) ct fun prep_conv ct = ( Conv.implies_conv safe_Rel_conv prep_conv else_conv safe_Rel_conv else_conv Conv.all_conv) ct fun fold_relator_eqs_conv ctxt ct = (bottom_rewr_conv (get_relator_eq ctxt)) ct; fun unfold_relator_eqs_conv ctxt ct = (top_rewr_conv (get_sym_relator_eq ctxt)) ct; (** Replacing explicit equalities with is_equality premises **) fun mk_is_equality t = Const (\<^const_name>\is_equality\, Term.fastype_of t --> HOLogic.boolT) $ t fun gen_abstract_equalities ctxt (dest : term -> term * (term -> term)) thm = let val prop = Thm.prop_of thm val (t, mk_prop') = dest prop (* Only consider "(=)" at non-base types *) fun is_eq (Const (\<^const_name>\HOL.eq\, Type ("fun", [T, _]))) = (case T of Type (_, []) => false | _ => true) | is_eq _ = false val add_eqs = Term.fold_aterms (fn t => if is_eq t then insert (op =) t else I) val eq_consts = rev (add_eqs t []) val eqTs = map (snd o dest_Const) eq_consts val used = Term.add_free_names prop [] val names = map (K "") eqTs |> Name.variant_list used val frees = map Free (names ~~ eqTs) val prems = map (HOLogic.mk_Trueprop o mk_is_equality) frees val prop1 = mk_prop' (Term.subst_atomic (eq_consts ~~ frees) t) val prop2 = fold Logic.all frees (Logic.list_implies (prems, prop1)) val cprop = Thm.cterm_of ctxt prop2 val equal_thm = Raw_Simplifier.rewrite ctxt false @{thms is_equality_lemma} cprop fun forall_elim thm = Thm.forall_elim_vars (Thm.maxidx_of thm + 1) thm in forall_elim (thm COMP (equal_thm COMP @{thm equal_elim_rule2})) end handle TERM _ => thm fun abstract_equalities_transfer ctxt thm = let fun dest prop = let val prems = Logic.strip_imp_prems prop val concl = HOLogic.dest_Trueprop (Logic.strip_imp_concl prop) val ((rel, x), y) = apfst Term.dest_comb (Term.dest_comb concl) in (rel, fn rel' => Logic.list_implies (prems, HOLogic.mk_Trueprop (rel' $ x $ y))) end val contracted_eq_thm = Conv.fconv_rule (transfer_rel_conv (fold_relator_eqs_conv ctxt)) thm handle CTERM _ => thm in gen_abstract_equalities ctxt dest contracted_eq_thm end fun abstract_equalities_relator_eq ctxt rel_eq_thm = gen_abstract_equalities ctxt (fn x => (x, I)) (rel_eq_thm RS @{thm is_equality_def [THEN iffD2]}) fun abstract_equalities_domain ctxt thm = let fun dest prop = let val prems = Logic.strip_imp_prems prop val concl = HOLogic.dest_Trueprop (Logic.strip_imp_concl prop) val ((eq, dom), y) = apfst Term.dest_comb (Term.dest_comb concl) in (dom, fn dom' => Logic.list_implies (prems, HOLogic.mk_Trueprop (eq $ dom' $ y))) end fun transfer_rel_conv conv = Conv.concl_conv ~1 (HOLogic.Trueprop_conv (Conv.arg1_conv (Conv.arg_conv conv))) val contracted_eq_thm = Conv.fconv_rule (transfer_rel_conv (fold_relator_eqs_conv ctxt)) thm in gen_abstract_equalities ctxt dest contracted_eq_thm end (** Replacing explicit Domainp predicates with Domainp assumptions **) fun mk_Domainp_assm (T, R) = HOLogic.mk_eq ((Const (\<^const_name>\Domainp\, Term.fastype_of T --> Term.fastype_of R) $ T), R) fun fold_Domainp f (t as Const (\<^const_name>\Domainp\,_) $ (Var (_,_))) = f t | fold_Domainp f (t $ u) = fold_Domainp f t #> fold_Domainp f u | fold_Domainp f (Abs (_, _, t)) = fold_Domainp f t | fold_Domainp _ _ = I fun subst_terms tab t = let val t' = Termtab.lookup tab t in case t' of SOME t' => t' | NONE => (case t of u $ v => (subst_terms tab u) $ (subst_terms tab v) | Abs (a, T, t) => Abs (a, T, subst_terms tab t) | t => t) end fun gen_abstract_domains ctxt (dest : term -> term * (term -> term)) thm = let val prop = Thm.prop_of thm val (t, mk_prop') = dest prop val Domainp_tms = rev (fold_Domainp (fn t => insert op= t) t []) val Domainp_Ts = map (snd o dest_funT o snd o dest_Const o fst o dest_comb) Domainp_tms val used = Term.add_free_names t [] val rels = map (snd o dest_comb) Domainp_tms val rel_names = map (fst o fst o dest_Var) rels val names = map (fn name => ("D" ^ name)) rel_names |> Name.variant_list used val frees = map Free (names ~~ Domainp_Ts) val prems = map (HOLogic.mk_Trueprop o mk_Domainp_assm) (rels ~~ frees); val t' = subst_terms (fold Termtab.update (Domainp_tms ~~ frees) Termtab.empty) t val prop1 = fold Logic.all frees (Logic.list_implies (prems, mk_prop' t')) val prop2 = Logic.list_rename_params (rev names) prop1 val cprop = Thm.cterm_of ctxt prop2 val equal_thm = Raw_Simplifier.rewrite ctxt false @{thms Domainp_lemma} cprop fun forall_elim thm = Thm.forall_elim_vars (Thm.maxidx_of thm + 1) thm; in forall_elim (thm COMP (equal_thm COMP @{thm equal_elim_rule2})) end handle TERM _ => thm fun abstract_domains_transfer ctxt thm = let fun dest prop = let val prems = Logic.strip_imp_prems prop val concl = HOLogic.dest_Trueprop (Logic.strip_imp_concl prop) val ((rel, x), y) = apfst Term.dest_comb (Term.dest_comb concl) in (x, fn x' => Logic.list_implies (prems, HOLogic.mk_Trueprop (rel $ x' $ y))) end in gen_abstract_domains ctxt dest thm end fun abstract_domains_relator_domain ctxt thm = let fun dest prop = let val prems = Logic.strip_imp_prems prop val concl = HOLogic.dest_Trueprop (Logic.strip_imp_concl prop) val ((rel, x), y) = apfst Term.dest_comb (Term.dest_comb concl) in (y, fn y' => Logic.list_implies (prems, HOLogic.mk_Trueprop (rel $ x $ y'))) end in gen_abstract_domains ctxt dest thm end fun detect_transfer_rules thm = let fun is_transfer_rule tm = case (HOLogic.dest_Trueprop tm) of (Const (\<^const_name>\HOL.eq\, _)) $ ((Const (\<^const_name>\Domainp\, _)) $ _) $ _ => false | _ $ _ $ _ => true | _ => false fun safe_transfer_rule_conv ctm = if is_transfer_rule (Thm.term_of ctm) then safe_Rel_conv ctm else Conv.all_conv ctm in Conv.fconv_rule (Conv.prems_conv ~1 safe_transfer_rule_conv) thm end (** Adding transfer domain rules **) fun prep_transfer_domain_thm ctxt = abstract_equalities_domain ctxt o detect_transfer_rules fun add_transfer_domain_thm thm ctxt = (add_transfer_thm o prep_transfer_domain_thm (Context.proof_of ctxt)) thm ctxt fun del_transfer_domain_thm thm ctxt = (del_transfer_thm o prep_transfer_domain_thm (Context.proof_of ctxt)) thm ctxt (** Transfer proof method **) val post_simps = @{thms transfer_forall_eq [symmetric] transfer_implies_eq [symmetric] transfer_bforall_unfold} fun gen_frees_tac keepers ctxt = SUBGOAL (fn (t, i) => let val keepers = keepers @ get_known_frees ctxt val vs = rev (Term.add_frees t []) val vs' = filter_out (member (op =) keepers) vs in Induct.arbitrary_tac ctxt 0 vs' i end) fun mk_relT (T, U) = T --> U --> HOLogic.boolT fun mk_Rel t = let val T = fastype_of t in Const (\<^const_name>\Transfer.Rel\, T --> T) $ t end fun transfer_rule_of_terms (prj : typ * typ -> typ) ctxt tab t u = let (* precondition: prj(T,U) must consist of only TFrees and type "fun" *) fun rel (T as Type ("fun", [T1, T2])) (U as Type ("fun", [U1, U2])) = let val r1 = rel T1 U1 val r2 = rel T2 U2 val rT = fastype_of r1 --> fastype_of r2 --> mk_relT (T, U) in Const (\<^const_name>\rel_fun\, rT) $ r1 $ r2 end | rel T U = let val (a, _) = dest_TFree (prj (T, U)) in Free (the (AList.lookup (op =) tab a), mk_relT (T, U)) end fun zip _ thms (Bound i) (Bound _) = (nth thms i, []) | zip ctxt thms (Abs (x, T, t)) (Abs (y, U, u)) = let val ([x', y'], ctxt') = Variable.variant_fixes [x, y] ctxt val prop = mk_Rel (rel T U) $ Free (x', T) $ Free (y', U) val cprop = Thm.cterm_of ctxt' (HOLogic.mk_Trueprop prop) val thm0 = Thm.assume cprop val (thm1, hyps) = zip ctxt' (thm0 :: thms) t u val ((r1, x), y) = apfst Thm.dest_comb (Thm.dest_comb (Thm.dest_arg cprop)) val r2 = Thm.dest_fun2 (Thm.dest_arg (Thm.cprop_of thm1)) val (a1, (b1, _)) = apsnd Thm.dest_funT (Thm.dest_funT (Thm.ctyp_of_cterm r1)) val (a2, (b2, _)) = apsnd Thm.dest_funT (Thm.dest_funT (Thm.ctyp_of_cterm r2)) val tinsts = [SOME a1, SOME b1, SOME a2, SOME b2] val insts = [SOME (Thm.dest_arg r1), SOME (Thm.dest_arg r2)] val rule = Thm.instantiate' tinsts insts @{thm Rel_abs} val thm2 = Thm.forall_intr x (Thm.forall_intr y (Thm.implies_intr cprop thm1)) in (thm2 COMP rule, hyps) end | zip ctxt thms (f $ t) (g $ u) = let val (thm1, hyps1) = zip ctxt thms f g val (thm2, hyps2) = zip ctxt thms t u in (thm2 RS (thm1 RS @{thm Rel_app}), hyps1 @ hyps2) end | zip _ _ t u = let val T = fastype_of t val U = fastype_of u val prop = mk_Rel (rel T U) $ t $ u val cprop = Thm.cterm_of ctxt (HOLogic.mk_Trueprop prop) in (Thm.assume cprop, [cprop]) end val r = mk_Rel (rel (fastype_of t) (fastype_of u)) val goal = HOLogic.mk_Trueprop (r $ t $ u) val rename = Thm.trivial (Thm.cterm_of ctxt goal) val (thm, hyps) = zip ctxt [] t u in Drule.implies_intr_list hyps (thm RS rename) end (* create a lambda term of the same shape as the given term *) fun skeleton is_atom = let fun dummy ctxt = let val (c, ctxt') = yield_singleton Variable.variant_fixes "a" ctxt in (Free (c, dummyT), ctxt') end fun skel (Bound i) ctxt = (Bound i, ctxt) | skel (Abs (x, _, t)) ctxt = let val (t', ctxt) = skel t ctxt in (Abs (x, dummyT, t'), ctxt) end | skel (tu as t $ u) ctxt = if is_atom tu andalso not (Term.is_open tu) then dummy ctxt else let val (t', ctxt) = skel t ctxt val (u', ctxt) = skel u ctxt in (t' $ u', ctxt) end | skel _ ctxt = dummy ctxt in fn ctxt => fn t => fst (skel t ctxt) |> Syntax.check_term ctxt (* FIXME avoid syntax operation!? *) end (** Monotonicity analysis **) (* TODO: Put extensible table in theory data *) val monotab = Symtab.make [(\<^const_name>\transfer_implies\, [~1, 1]), (\<^const_name>\transfer_forall\, [1])(*, (@{const_name implies}, [~1, 1]), (@{const_name All}, [1])*)] (* Function bool_insts determines the set of boolean-relation variables that can be instantiated to implies, rev_implies, or iff. Invariants: bool_insts p (t, u) requires that u :: _ => _ => ... => bool, and t is a skeleton of u *) fun bool_insts p (t, u) = let fun strip2 (t1 $ t2, u1 $ u2, tus) = strip2 (t1, u1, (t2, u2) :: tus) | strip2 x = x fun or3 ((a, b, c), (x, y, z)) = (a orelse x, b orelse y, c orelse z) fun go Ts p (Abs (_, T, t), Abs (_, _, u)) tab = go (T :: Ts) p (t, u) tab | go Ts p (t, u) tab = let val (a, _) = dest_TFree (Term.body_type (Term.fastype_of1 (Ts, t))) val (_, tf, tus) = strip2 (t, u, []) val ps_opt = case tf of Const (c, _) => Symtab.lookup monotab c | _ => NONE val tab1 = case ps_opt of SOME ps => let val ps' = map (fn x => p * x) (take (length tus) ps) in fold I (map2 (go Ts) ps' tus) tab end | NONE => tab val tab2 = Symtab.make [(a, (p >= 0, p <= 0, is_none ps_opt))] in Symtab.join (K or3) (tab1, tab2) end val tab = go [] p (t, u) Symtab.empty fun f (a, (true, false, false)) = SOME (a, \<^const>\implies\) | f (a, (false, true, false)) = SOME (a, \<^const>\rev_implies\) | f (a, (true, true, _)) = SOME (a, HOLogic.eq_const HOLogic.boolT) | f _ = NONE in map_filter f (Symtab.dest tab) end fun transfer_rule_of_term ctxt equiv t = let val s = skeleton (is_compound_rhs ctxt) ctxt t val frees = map fst (Term.add_frees s []) val tfrees = map fst (Term.add_tfrees s []) fun prep a = "R" ^ Library.unprefix "'" a val (rnames, ctxt') = Variable.variant_fixes (map prep tfrees) ctxt val tab = tfrees ~~ rnames fun prep a = the (AList.lookup (op =) tab a) val thm = transfer_rule_of_terms fst ctxt' tab s t val binsts = bool_insts (if equiv then 0 else 1) (s, t) val idx = Thm.maxidx_of thm + 1 fun tinst (a, _) = (((a, idx), \<^sort>\type\), \<^ctyp>\bool\) fun inst (a, t) = ((Name.clean_index (prep a, idx), \<^typ>\bool \ bool \ bool\), Thm.cterm_of ctxt' t) in thm |> Thm.generalize (tfrees, rnames @ frees) idx |> Thm.instantiate (map tinst binsts, map inst binsts) end fun transfer_rule_of_lhs ctxt t = let val s = skeleton (is_compound_lhs ctxt) ctxt t val frees = map fst (Term.add_frees s []) val tfrees = map fst (Term.add_tfrees s []) fun prep a = "R" ^ Library.unprefix "'" a val (rnames, ctxt') = Variable.variant_fixes (map prep tfrees) ctxt val tab = tfrees ~~ rnames fun prep a = the (AList.lookup (op =) tab a) val thm = transfer_rule_of_terms snd ctxt' tab t s val binsts = bool_insts 1 (s, t) val idx = Thm.maxidx_of thm + 1 fun tinst (a, _) = (((a, idx), \<^sort>\type\), \<^ctyp>\bool\) fun inst (a, t) = ((Name.clean_index (prep a, idx), \<^typ>\bool \ bool \ bool\), Thm.cterm_of ctxt' t) in thm |> Thm.generalize (tfrees, rnames @ frees) idx |> Thm.instantiate (map tinst binsts, map inst binsts) end fun eq_rules_tac ctxt eq_rules = TRY o REPEAT_ALL_NEW (resolve_tac ctxt eq_rules) THEN_ALL_NEW resolve_tac ctxt @{thms is_equality_eq} fun eq_tac ctxt = eq_rules_tac ctxt (get_relator_eq_raw ctxt) fun transfer_step_tac ctxt = REPEAT_ALL_NEW (resolve_tac ctxt (get_transfer_raw ctxt)) THEN_ALL_NEW (DETERM o eq_rules_tac ctxt (get_relator_eq_raw ctxt)) fun transfer_start_tac equiv ctxt i = let val pre_simps = @{thms transfer_forall_eq transfer_implies_eq} val start_rule = if equiv then @{thm transfer_start} else @{thm transfer_start'} val err_msg = "Transfer failed to convert goal to an object-logic formula" fun main_tac (t, i) = resolve_tac ctxt [start_rule] i THEN (resolve_tac ctxt [transfer_rule_of_term ctxt equiv (HOLogic.dest_Trueprop t)]) (i + 1) handle TERM (_, ts) => raise TERM (err_msg, ts) in EVERY [rewrite_goal_tac ctxt pre_simps i THEN SUBGOAL main_tac i] end; fun transfer_prover_start_tac ctxt = SUBGOAL (fn (t, i) => let val rhs = (snd o Term.dest_comb o HOLogic.dest_Trueprop) t val rule1 = transfer_rule_of_term ctxt false rhs val expand_eqs_in_rel_conv = transfer_rel_conv (unfold_relator_eqs_conv ctxt) in EVERY [CONVERSION prep_conv i, CONVERSION expand_eqs_in_rel_conv i, resolve_tac ctxt @{thms transfer_prover_start} i, resolve_tac ctxt [rule1] (i + 1)] end); fun transfer_end_tac ctxt i = let val post_simps = @{thms transfer_forall_eq [symmetric] transfer_implies_eq [symmetric] transfer_bforall_unfold} in EVERY [rewrite_goal_tac ctxt post_simps i, Goal.norm_hhf_tac ctxt i] end; fun transfer_prover_end_tac ctxt i = resolve_tac ctxt @{thms refl} i local infix 1 THEN_ALL_BUT_FIRST_NEW fun (tac1 THEN_ALL_BUT_FIRST_NEW tac2) i st = st |> (tac1 i THEN (fn st' => Seq.INTERVAL tac2 (i + 1) (i + Thm.nprems_of st' - Thm.nprems_of st) st')); in fun transfer_tac equiv ctxt i = let val rules = get_transfer_raw ctxt val eq_rules = get_relator_eq_raw ctxt (* allow unsolved subgoals only for standard transfer method, not for transfer' *) val end_tac = if equiv then K all_tac else K no_tac fun transfer_search_tac i = (SOLVED' (REPEAT_ALL_NEW (resolve_tac ctxt rules) THEN_ALL_NEW (DETERM o eq_rules_tac ctxt eq_rules)) ORELSE' end_tac) i in (transfer_start_tac equiv ctxt THEN_ALL_BUT_FIRST_NEW transfer_search_tac THEN' transfer_end_tac ctxt) i end fun transfer_prover_tac ctxt i = let val rules = get_transfer_raw ctxt val eq_rules = get_relator_eq_raw ctxt fun transfer_prover_search_tac i = (REPEAT_ALL_NEW (resolve_tac ctxt rules) THEN_ALL_NEW (DETERM o eq_rules_tac ctxt eq_rules)) i in (transfer_prover_start_tac ctxt THEN_ALL_BUT_FIRST_NEW transfer_prover_search_tac THEN' transfer_prover_end_tac ctxt) i end end; (** Transfer attribute **) fun transferred ctxt extra_rules thm = let val rules = extra_rules @ get_transfer_raw ctxt val eq_rules = get_relator_eq_raw ctxt val pre_simps = @{thms transfer_forall_eq transfer_implies_eq} val thm1 = Drule.forall_intr_vars thm val instT = rev (Term.add_tvars (Thm.full_prop_of thm1) []) |> map (fn v as ((a, _), S) => (v, Thm.ctyp_of ctxt (TFree (a, S)))) val thm2 = thm1 |> Thm.instantiate (instT, []) |> Raw_Simplifier.rewrite_rule ctxt pre_simps val ctxt' = Variable.declare_names (Thm.full_prop_of thm2) ctxt val rule = transfer_rule_of_lhs ctxt' (HOLogic.dest_Trueprop (Thm.concl_of thm2)) in Goal.prove_internal ctxt' [] (Thm.cterm_of ctxt' (HOLogic.mk_Trueprop (Var (("P", 0), \<^typ>\bool\)))) (fn _ => resolve_tac ctxt' [thm2 RS @{thm transfer_start'}, thm2 RS @{thm transfer_start}] 1 THEN (resolve_tac ctxt' [rule] THEN_ALL_NEW (SOLVED' (REPEAT_ALL_NEW (resolve_tac ctxt' rules) THEN_ALL_NEW (DETERM o eq_rules_tac ctxt' eq_rules)))) 1 handle TERM (_, ts) => raise TERM ("Transfer failed to convert goal to an object-logic formula", ts)) |> Raw_Simplifier.rewrite_rule ctxt' post_simps |> Simplifier.norm_hhf ctxt' |> Drule.generalize (map (fst o dest_TFree o Thm.typ_of o snd) instT, []) |> Drule.zero_var_indexes end (* handle THM _ => thm *) fun untransferred ctxt extra_rules thm = let val rules = extra_rules @ get_transfer_raw ctxt val eq_rules = get_relator_eq_raw ctxt val pre_simps = @{thms transfer_forall_eq transfer_implies_eq} val thm1 = Drule.forall_intr_vars thm val instT = rev (Term.add_tvars (Thm.full_prop_of thm1) []) |> map (fn v as ((a, _), S) => (v, Thm.ctyp_of ctxt (TFree (a, S)))) val thm2 = thm1 |> Thm.instantiate (instT, []) |> Raw_Simplifier.rewrite_rule ctxt pre_simps val ctxt' = Variable.declare_names (Thm.full_prop_of thm2) ctxt val t = HOLogic.dest_Trueprop (Thm.concl_of thm2) val rule = transfer_rule_of_term ctxt' true t in Goal.prove_internal ctxt' [] (Thm.cterm_of ctxt' (HOLogic.mk_Trueprop (Var (("P", 0), \<^typ>\bool\)))) (fn _ => resolve_tac ctxt' [thm2 RS @{thm untransfer_start}] 1 THEN (resolve_tac ctxt' [rule] THEN_ALL_NEW (SOLVED' (REPEAT_ALL_NEW (resolve_tac ctxt' rules) THEN_ALL_NEW (DETERM o eq_rules_tac ctxt' eq_rules)))) 1 handle TERM (_, ts) => raise TERM ("Transfer failed to convert goal to an object-logic formula", ts)) |> Raw_Simplifier.rewrite_rule ctxt' post_simps |> Simplifier.norm_hhf ctxt' |> Drule.generalize (map (fst o dest_TFree o Thm.typ_of o snd) instT, []) |> Drule.zero_var_indexes end (** Methods and attributes **) val free = Args.context -- Args.term >> (fn (_, Free v) => v | (ctxt, t) => error ("Bad free variable: " ^ Syntax.string_of_term ctxt t)) val fixing = Scan.optional (Scan.lift (Args.$$$ "fixing" -- Args.colon) |-- Scan.repeat free) [] val reverse_prems = fn _ => PRIMITIVE (fn thm => fold_rev (fn i => Thm.permute_prems i 1) (0 upto Thm.nprems_of thm - 1) thm); fun transfer_start_method equiv : (Proof.context -> Proof.method) context_parser = fixing >> (fn vs => fn ctxt => SIMPLE_METHOD' (gen_frees_tac vs ctxt THEN' transfer_start_tac equiv ctxt THEN' reverse_prems)); fun transfer_method equiv : (Proof.context -> Proof.method) context_parser = fixing >> (fn vs => fn ctxt => SIMPLE_METHOD' (gen_frees_tac vs ctxt THEN' transfer_tac equiv ctxt)) val transfer_prover_start_method : (Proof.context -> Proof.method) context_parser = Scan.succeed (fn ctxt => SIMPLE_METHOD' (transfer_prover_start_tac ctxt THEN' reverse_prems)) val transfer_prover_method : (Proof.context -> Proof.method) context_parser = Scan.succeed (fn ctxt => SIMPLE_METHOD' (transfer_prover_tac ctxt)) (* Attribute for transfer rules *) fun prep_rule ctxt = abstract_domains_transfer ctxt o abstract_equalities_transfer ctxt o Conv.fconv_rule prep_conv val transfer_add = Thm.declaration_attribute (fn thm => fn ctxt => (add_transfer_thm o prep_rule (Context.proof_of ctxt)) thm ctxt) val transfer_del = Thm.declaration_attribute (fn thm => fn ctxt => (del_transfer_thm o prep_rule (Context.proof_of ctxt)) thm ctxt) val transfer_attribute = Attrib.add_del transfer_add transfer_del (* Attributes for transfer domain rules *) val transfer_domain_add = Thm.declaration_attribute add_transfer_domain_thm val transfer_domain_del = Thm.declaration_attribute del_transfer_domain_thm val transfer_domain_attribute = Attrib.add_del transfer_domain_add transfer_domain_del (* Attributes for transferred rules *) fun transferred_attribute thms = Thm.rule_attribute thms (fn context => transferred (Context.proof_of context) thms) fun untransferred_attribute thms = Thm.rule_attribute thms (fn context => untransferred (Context.proof_of context) thms) val transferred_attribute_parser = Attrib.thms >> transferred_attribute val untransferred_attribute_parser = Attrib.thms >> untransferred_attribute fun morph_pred_data phi = let val morph_thm = Morphism.thm phi in map_pred_data' morph_thm morph_thm (map morph_thm) end fun lookup_pred_data ctxt type_name = Symtab.lookup (get_pred_data ctxt) type_name |> Option.map (morph_pred_data (Morphism.transfer_morphism' ctxt)) fun update_pred_data type_name qinfo ctxt = Data.map (map_pred_data (Symtab.update (type_name, qinfo))) ctxt (* Theory setup *) val _ = Theory.setup let val name = \<^binding>\relator_eq\ fun add_thm thm context = context |> Data.map (map_relator_eq (Item_Net.update (Thm.trim_context thm))) |> Data.map (map_relator_eq_raw (Item_Net.update (Thm.trim_context (abstract_equalities_relator_eq (Context.proof_of context) thm)))) fun del_thm thm context = context |> Data.map (map_relator_eq (Item_Net.remove thm)) |> Data.map (map_relator_eq_raw (Item_Net.remove (abstract_equalities_relator_eq (Context.proof_of context) thm))) val add = Thm.declaration_attribute add_thm val del = Thm.declaration_attribute del_thm val text = "declaration of relator equality rule (used by transfer method)" val content = Item_Net.content o #relator_eq o Data.get in Attrib.setup name (Attrib.add_del add del) text #> Global_Theory.add_thms_dynamic (name, content) end val _ = Theory.setup let val name = \<^binding>\relator_domain\ fun add_thm thm context = let val thm' = thm |> abstract_domains_relator_domain (Context.proof_of context) |> Thm.trim_context in context |> Data.map (map_relator_domain (Item_Net.update thm')) |> add_transfer_domain_thm thm' end fun del_thm thm context = let val thm' = abstract_domains_relator_domain (Context.proof_of context) thm in context |> Data.map (map_relator_domain (Item_Net.remove thm')) |> del_transfer_domain_thm thm' end val add = Thm.declaration_attribute add_thm val del = Thm.declaration_attribute del_thm val text = "declaration of relator domain rule (used by transfer method)" val content = Item_Net.content o #relator_domain o Data.get in Attrib.setup name (Attrib.add_del add del) text #> Global_Theory.add_thms_dynamic (name, content) end val _ = Theory.setup (Attrib.setup \<^binding>\transfer_rule\ transfer_attribute "transfer rule for transfer method" #> Global_Theory.add_thms_dynamic (\<^binding>\transfer_raw\, Item_Net.content o #transfer_raw o Data.get) #> Attrib.setup \<^binding>\transfer_domain_rule\ transfer_domain_attribute "transfer domain rule for transfer method" #> Attrib.setup \<^binding>\transferred\ transferred_attribute_parser "raw theorem transferred to abstract theorem using transfer rules" #> Attrib.setup \<^binding>\untransferred\ untransferred_attribute_parser "abstract theorem transferred to raw theorem using transfer rules" #> Global_Theory.add_thms_dynamic (\<^binding>\relator_eq_raw\, Item_Net.content o #relator_eq_raw o Data.get) #> Method.setup \<^binding>\transfer_start\ (transfer_start_method true) "firtst step in the transfer algorithm (for debugging transfer)" #> Method.setup \<^binding>\transfer_start'\ (transfer_start_method false) "firtst step in the transfer algorithm (for debugging transfer)" #> Method.setup \<^binding>\transfer_prover_start\ transfer_prover_start_method "firtst step in the transfer_prover algorithm (for debugging transfer_prover)" #> Method.setup \<^binding>\transfer_step\ (Scan.succeed (fn ctxt => SIMPLE_METHOD' (transfer_step_tac ctxt))) "step in the search for transfer rules (for debugging transfer and transfer_prover)" #> Method.setup \<^binding>\transfer_end\ (Scan.succeed (fn ctxt => SIMPLE_METHOD' (transfer_end_tac ctxt))) "last step in the transfer algorithm (for debugging transfer)" #> Method.setup \<^binding>\transfer_prover_end\ (Scan.succeed (fn ctxt => SIMPLE_METHOD' (transfer_prover_end_tac ctxt))) "last step in the transfer_prover algorithm (for debugging transfer_prover)" #> Method.setup \<^binding>\transfer\ (transfer_method true) "generic theorem transfer method" #> Method.setup \<^binding>\transfer'\ (transfer_method false) "generic theorem transfer method" #> Method.setup \<^binding>\transfer_prover\ transfer_prover_method "for proving transfer rules") end