(* Title: HOL/Tools/BNF/bnf_util.ML Author: Dmitriy Traytel, TU Muenchen Copyright 2012 Library for bounded natural functors. *) signature BNF_UTIL = sig include CTR_SUGAR_UTIL include BNF_FP_REC_SUGAR_UTIL val transfer_plugin: string val unflatt: 'a list list list -> 'b list -> 'b list list list val unflattt: 'a list list list list -> 'b list -> 'b list list list list val mk_TFreess: int list -> Proof.context -> typ list list * Proof.context val mk_Freesss: string -> typ list list list -> Proof.context -> term list list list * Proof.context val mk_Freessss: string -> typ list list list list -> Proof.context -> term list list list list * Proof.context val nonzero_string_of_int: int -> string val binder_fun_types: typ -> typ list val body_fun_type: typ -> typ val strip_fun_type: typ -> typ list * typ val strip_typeN: int -> typ -> typ list * typ val mk_pred2T: typ -> typ -> typ val mk_relT: typ * typ -> typ val dest_relT: typ -> typ * typ val dest_pred2T: typ -> typ * typ val mk_sumT: typ * typ -> typ val ctwo: term val fst_const: typ -> term val snd_const: typ -> term val Id_const: typ -> term val enforce_type: Proof.context -> (typ -> typ) -> typ -> term -> term val mk_Ball: term -> term -> term val mk_Bex: term -> term -> term val mk_Card_order: term -> term val mk_Field: term -> term val mk_Gr: term -> term -> term val mk_Grp: term -> term -> term val mk_UNION: term -> term -> term val mk_Union: typ -> term val mk_card_binop: string -> (typ * typ -> typ) -> term -> term -> term val mk_card_of: term -> term val mk_card_order: term -> term val mk_cexp: term -> term -> term val mk_cinfinite: term -> term val mk_collect: term list -> typ -> term val mk_converse: term -> term val mk_conversep: term -> term val mk_cprod: term -> term -> term val mk_csum: term -> term -> term val mk_dir_image: term -> term -> term val mk_eq_onp: term -> term val mk_rel_fun: term -> term -> term val mk_image: term -> term val mk_in: term list -> term list -> typ -> term val mk_inj: term -> term val mk_leq: term -> term -> term val mk_ordLeq: term -> term -> term val mk_rel_comp: term * term -> term val mk_rel_compp: term * term -> term val mk_vimage2p: term -> term -> term val mk_reflp: term -> term val mk_symp: term -> term val mk_transp: term -> term val mk_union: term * term -> term (*parameterized terms*) val mk_nthN: int -> term -> int -> term (*parameterized thms*) val prod_injectD: thm val prod_injectI: thm val ctrans: thm val id_apply: thm val meta_mp: thm val meta_spec: thm val o_apply: thm val rel_funD: thm val rel_funI: thm val set_mp: thm val set_rev_mp: thm val subset_UNIV: thm val mk_conjIN: int -> thm val mk_nthI: int -> int -> thm val mk_nth_conv: int -> int -> thm val mk_ordLeq_csum: int -> int -> thm -> thm val mk_pointful: Proof.context -> thm -> thm val mk_rel_funDN: int -> thm -> thm val mk_rel_funDN_rotated: int -> thm -> thm val mk_sym: thm -> thm val mk_trans: thm -> thm -> thm val mk_UnIN: int -> int -> thm val mk_Un_upper: int -> int -> thm val is_refl_bool: term -> bool val is_refl: thm -> bool val is_concl_refl: thm -> bool val no_refl: thm list -> thm list val no_reflexive: thm list -> thm list val parse_type_args_named_constrained: (binding option * (string * string option)) list parser val parse_map_rel_pred_bindings: (binding * binding * binding) parser val typedef: binding * (string * sort) list * mixfix -> term -> (binding * binding) option -> (Proof.context -> tactic) -> local_theory -> (string * Typedef.info) * local_theory end; structure BNF_Util : BNF_UTIL = struct open Ctr_Sugar_Util open BNF_FP_Rec_Sugar_Util val transfer_plugin = Plugin_Name.declare_setup \<^binding>\transfer\; (* Library proper *) fun unfla0 xs = fold_map (fn _ => fn (c :: cs) => (c, cs)) xs; fun unflat0 xss = fold_map unfla0 xss; fun unflatt0 xsss = fold_map unflat0 xsss; fun unflattt0 xssss = fold_map unflatt0 xssss; fun unflatt xsss = fst o unflatt0 xsss; fun unflattt xssss = fst o unflattt0 xssss; val parse_type_arg_constrained = Parse.type_ident -- Scan.option (\<^keyword>\::\ |-- Parse.!!! Parse.sort); val parse_type_arg_named_constrained = (Parse.reserved "dead" >> K NONE || parse_opt_binding_colon >> SOME) -- parse_type_arg_constrained; val parse_type_args_named_constrained = parse_type_arg_constrained >> (single o pair (SOME Binding.empty)) || \<^keyword>\(\ |-- Parse.!!! (Parse.list1 parse_type_arg_named_constrained --| \<^keyword>\)\) || Scan.succeed []; val parse_map_rel_pred_binding = Parse.name --| \<^keyword>\:\ -- Parse.binding; val no_map_rel = (Binding.empty, Binding.empty, Binding.empty); fun extract_map_rel_pred ("map", m) = (fn (_, r, p) => (m, r, p)) | extract_map_rel_pred ("rel", r) = (fn (m, _, p) => (m, r, p)) | extract_map_rel_pred ("pred", p) = (fn (m, r, _) => (m, r, p)) | extract_map_rel_pred (s, _) = error ("Unknown label " ^ quote s ^ " (expected \"map\" or \"rel\")"); val parse_map_rel_pred_bindings = \<^keyword>\for\ |-- Scan.repeat parse_map_rel_pred_binding >> (fn ps => fold extract_map_rel_pred ps no_map_rel) || Scan.succeed no_map_rel; fun typedef (b, Ts, mx) set opt_morphs tac lthy = let (*Work around loss of qualification in "typedef" axioms by replicating it in the name*) val b' = fold_rev Binding.prefix_name (map (suffix "_" o fst) (Binding.path_of b)) b; val default_bindings = Typedef.default_bindings (Binding.concealed b'); val bindings = (case opt_morphs of NONE => default_bindings | SOME (Rep_name, Abs_name) => {Rep_name = Binding.concealed Rep_name, Abs_name = Binding.concealed Abs_name, type_definition_name = #type_definition_name default_bindings}); val ((name, info), (lthy, lthy_old)) = lthy |> Local_Theory.open_target |> snd |> Typedef.add_typedef {overloaded = false} (b', Ts, mx) set (SOME bindings) tac ||> `Local_Theory.close_target; val phi = Proof_Context.export_morphism lthy_old lthy; in ((name, Typedef.transform_info phi info), lthy) end; (* Term construction *) (** Fresh variables **) fun nonzero_string_of_int 0 = "" | nonzero_string_of_int n = string_of_int n; val mk_TFreess = fold_map mk_TFrees; fun mk_Freesss x Tsss = @{fold_map 2} mk_Freess (mk_names (length Tsss) x) Tsss; fun mk_Freessss x Tssss = @{fold_map 2} mk_Freesss (mk_names (length Tssss) x) Tssss; (** Types **) (*maps [T1,...,Tn]--->T to ([T1,T2,...,Tn], T)*) fun strip_typeN 0 T = ([], T) | strip_typeN n (Type (\<^type_name>\fun\, [T, T'])) = strip_typeN (n - 1) T' |>> cons T | strip_typeN _ T = raise TYPE ("strip_typeN", [T], []); (*maps [T1,...,Tn]--->T-->U to ([T1,T2,...,Tn], T-->U), where U is not a function type*) fun strip_fun_type T = strip_typeN (num_binder_types T - 1) T; val binder_fun_types = fst o strip_fun_type; val body_fun_type = snd o strip_fun_type; fun mk_pred2T T U = mk_predT [T, U]; val mk_relT = HOLogic.mk_setT o HOLogic.mk_prodT; val dest_relT = HOLogic.dest_prodT o HOLogic.dest_setT; val dest_pred2T = apsnd Term.domain_type o Term.dest_funT; fun mk_sumT (LT, RT) = Type (\<^type_name>\Sum_Type.sum\, [LT, RT]); (** Constants **) fun fst_const T = Const (\<^const_name>\fst\, T --> fst (HOLogic.dest_prodT T)); fun snd_const T = Const (\<^const_name>\snd\, T --> snd (HOLogic.dest_prodT T)); fun Id_const T = Const (\<^const_name>\Id\, mk_relT (T, T)); (** Operators **) fun enforce_type ctxt get_T T t = Term.subst_TVars (tvar_subst (Proof_Context.theory_of ctxt) [get_T (fastype_of t)] [T]) t; fun mk_converse R = let val RT = dest_relT (fastype_of R); val RST = mk_relT (snd RT, fst RT); in Const (\<^const_name>\converse\, fastype_of R --> RST) $ R end; fun mk_rel_comp (R, S) = let val RT = fastype_of R; val ST = fastype_of S; val RST = mk_relT (fst (dest_relT RT), snd (dest_relT ST)); in Const (\<^const_name>\relcomp\, RT --> ST --> RST) $ R $ S end; fun mk_Gr A f = let val ((AT, BT), FT) = `dest_funT (fastype_of f); in Const (\<^const_name>\Gr\, HOLogic.mk_setT AT --> FT --> mk_relT (AT, BT)) $ A $ f end; fun mk_conversep R = let val RT = dest_pred2T (fastype_of R); val RST = mk_pred2T (snd RT) (fst RT); in Const (\<^const_name>\conversep\, fastype_of R --> RST) $ R end; fun mk_rel_compp (R, S) = let val RT = fastype_of R; val ST = fastype_of S; val RST = mk_pred2T (fst (dest_pred2T RT)) (snd (dest_pred2T ST)); in Const (\<^const_name>\relcompp\, RT --> ST --> RST) $ R $ S end; fun mk_Grp A f = let val ((AT, BT), FT) = `dest_funT (fastype_of f); in Const (\<^const_name>\Grp\, HOLogic.mk_setT AT --> FT --> mk_pred2T AT BT) $ A $ f end; fun mk_image f = let val (T, U) = dest_funT (fastype_of f); in Const (\<^const_name>\image\, (T --> U) --> HOLogic.mk_setT T --> HOLogic.mk_setT U) $ f end; fun mk_Ball X f = Const (\<^const_name>\Ball\, fastype_of X --> fastype_of f --> HOLogic.boolT) $ X $ f; fun mk_Bex X f = Const (\<^const_name>\Bex\, fastype_of X --> fastype_of f --> HOLogic.boolT) $ X $ f; fun mk_UNION X f = let val (T, U) = dest_funT (fastype_of f); in Const (\<^const_name>\Sup\, HOLogic.mk_setT U --> U) $ (Const (\<^const_name>\image\, (T --> U) --> fastype_of X --> HOLogic.mk_setT U) $ f $ X) end; fun mk_Union T = Const (\<^const_name>\Sup\, HOLogic.mk_setT (HOLogic.mk_setT T) --> HOLogic.mk_setT T); val mk_union = HOLogic.mk_binop \<^const_name>\sup\; fun mk_Field r = let val T = fst (dest_relT (fastype_of r)); in Const (\<^const_name>\Field\, mk_relT (T, T) --> HOLogic.mk_setT T) $ r end; fun mk_card_order bd = let val T = fastype_of bd; val AT = fst (dest_relT T); in Const (\<^const_name>\card_order_on\, HOLogic.mk_setT AT --> T --> HOLogic.boolT) $ HOLogic.mk_UNIV AT $ bd end; fun mk_Card_order bd = let val T = fastype_of bd; val AT = fst (dest_relT T); in Const (\<^const_name>\card_order_on\, HOLogic.mk_setT AT --> T --> HOLogic.boolT) $ mk_Field bd $ bd end; fun mk_cinfinite bd = Const (\<^const_name>\cinfinite\, fastype_of bd --> HOLogic.boolT) $ bd; fun mk_ordLeq t1 t2 = HOLogic.mk_mem (HOLogic.mk_prod (t1, t2), Const (\<^const_name>\ordLeq\, mk_relT (fastype_of t1, fastype_of t2))); fun mk_card_of A = let val AT = fastype_of A; val T = HOLogic.dest_setT AT; in Const (\<^const_name>\card_of\, AT --> mk_relT (T, T)) $ A end; fun mk_dir_image r f = let val (T, U) = dest_funT (fastype_of f); in Const (\<^const_name>\dir_image\, mk_relT (T, T) --> (T --> U) --> mk_relT (U, U)) $ r $ f end; fun mk_rel_fun R S = let val ((RA, RB), RT) = `dest_pred2T (fastype_of R); val ((SA, SB), ST) = `dest_pred2T (fastype_of S); in Const (\<^const_name>\rel_fun\, RT --> ST --> mk_pred2T (RA --> SA) (RB --> SB)) $ R $ S end; (*FIXME: "x"?*) (*(nth sets i) must be of type "T --> 'ai set"*) fun mk_in As sets T = let fun in_single set A = let val AT = fastype_of A; in Const (\<^const_name>\less_eq\, AT --> AT --> HOLogic.boolT) $ (set $ Free ("x", T)) $ A end; in if null sets then HOLogic.mk_UNIV T else HOLogic.mk_Collect ("x", T, foldr1 (HOLogic.mk_conj) (map2 in_single sets As)) end; fun mk_inj t = let val T as Type (\<^type_name>\fun\, [domT, _]) = fastype_of t in Const (\<^const_name>\inj_on\, T --> HOLogic.mk_setT domT --> HOLogic.boolT) $ t $ HOLogic.mk_UNIV domT end; fun mk_leq t1 t2 = Const (\<^const_name>\less_eq\, fastype_of t1 --> fastype_of t2 --> HOLogic.boolT) $ t1 $ t2; fun mk_card_binop binop typop t1 t2 = let val (T1, relT1) = `(fst o dest_relT) (fastype_of t1); val (T2, relT2) = `(fst o dest_relT) (fastype_of t2); in Const (binop, relT1 --> relT2 --> mk_relT (typop (T1, T2), typop (T1, T2))) $ t1 $ t2 end; val mk_csum = mk_card_binop \<^const_name>\csum\ mk_sumT; val mk_cprod = mk_card_binop \<^const_name>\cprod\ HOLogic.mk_prodT; val mk_cexp = mk_card_binop \<^const_name>\cexp\ (op --> o swap); val ctwo = \<^term>\ctwo\; fun mk_collect xs defT = let val T = (case xs of [] => defT | (x::_) => fastype_of x); in Const (\<^const_name>\collect\, HOLogic.mk_setT T --> T) $ (HOLogic.mk_set T xs) end; fun mk_vimage2p f g = let val (T1, T2) = dest_funT (fastype_of f); val (U1, U2) = dest_funT (fastype_of g); in Const (\<^const_name>\vimage2p\, (T1 --> T2) --> (U1 --> U2) --> mk_pred2T T2 U2 --> mk_pred2T T1 U1) $ f $ g end; fun mk_eq_onp P = let val T = domain_type (fastype_of P); in Const (\<^const_name>\eq_onp\, (T --> HOLogic.boolT) --> T --> T --> HOLogic.boolT) $ P end; fun mk_pred name R = Const (name, uncurry mk_pred2T (fastype_of R |> dest_pred2T) --> HOLogic.boolT) $ R; val mk_reflp = mk_pred \<^const_name>\reflp\; val mk_symp = mk_pred \<^const_name>\symp\; val mk_transp = mk_pred \<^const_name>\transp\; fun mk_trans thm1 thm2 = trans OF [thm1, thm2]; fun mk_sym thm = thm RS sym; val prod_injectD = @{thm iffD1[OF prod.inject]}; val prod_injectI = @{thm iffD2[OF prod.inject]}; val ctrans = @{thm ordLeq_transitive}; val id_apply = @{thm id_apply}; val meta_mp = @{thm meta_mp}; val meta_spec = @{thm meta_spec}; val o_apply = @{thm o_apply}; val rel_funD = @{thm rel_funD}; val rel_funI = @{thm rel_funI}; val set_mp = @{thm set_mp}; val set_rev_mp = @{thm set_rev_mp}; val subset_UNIV = @{thm subset_UNIV}; fun mk_pointful ctxt thm = unfold_thms ctxt [o_apply] (thm RS fun_cong); fun mk_nthN 1 t 1 = t | mk_nthN _ t 1 = HOLogic.mk_fst t | mk_nthN 2 t 2 = HOLogic.mk_snd t | mk_nthN n t m = mk_nthN (n - 1) (HOLogic.mk_snd t) (m - 1); fun mk_nth_conv n m = let fun thm b = if b then @{thm fstI} else @{thm sndI}; fun mk_nth_conv _ 1 1 = refl | mk_nth_conv _ _ 1 = @{thm fst_conv} | mk_nth_conv _ 2 2 = @{thm snd_conv} | mk_nth_conv b _ 2 = @{thm snd_conv} RS thm b | mk_nth_conv b n m = mk_nth_conv false (n - 1) (m - 1) RS thm b; in mk_nth_conv (not (m = n)) n m end; fun mk_nthI 1 1 = @{thm TrueE[OF TrueI]} | mk_nthI n m = fold (curry op RS) (replicate (m - 1) @{thm sndI}) (if m = n then @{thm TrueE[OF TrueI]} else @{thm fstI}); fun mk_conjIN 1 = @{thm TrueE[OF TrueI]} | mk_conjIN n = mk_conjIN (n - 1) RSN (2, conjI); fun mk_ordLeq_csum 1 1 thm = thm | mk_ordLeq_csum _ 1 thm = @{thm ordLeq_transitive} OF [thm, @{thm ordLeq_csum1}] | mk_ordLeq_csum 2 2 thm = @{thm ordLeq_transitive} OF [thm, @{thm ordLeq_csum2}] | mk_ordLeq_csum n m thm = @{thm ordLeq_transitive} OF [mk_ordLeq_csum (n - 1) (m - 1) thm, @{thm ordLeq_csum2[OF Card_order_csum]}]; fun mk_rel_funDN n = funpow n (fn thm => thm RS rel_funD); val mk_rel_funDN_rotated = rotate_prems ~1 oo mk_rel_funDN; local fun mk_Un_upper' 0 = @{thm subset_refl} | mk_Un_upper' 1 = @{thm Un_upper1} | mk_Un_upper' k = Library.foldr (op RS o swap) (replicate (k - 1) @{thm subset_trans[OF Un_upper1]}, @{thm Un_upper1}); in fun mk_Un_upper 1 1 = @{thm subset_refl} | mk_Un_upper n 1 = mk_Un_upper' (n - 2) RS @{thm subset_trans[OF Un_upper1]} | mk_Un_upper n m = mk_Un_upper' (n - m) RS @{thm subset_trans[OF Un_upper2]}; end; local fun mk_UnIN' 0 = @{thm UnI2} | mk_UnIN' m = mk_UnIN' (m - 1) RS @{thm UnI1}; in fun mk_UnIN 1 1 = @{thm TrueE[OF TrueI]} | mk_UnIN n 1 = Library.foldr1 (op RS o swap) (replicate (n - 1) @{thm UnI1}) | mk_UnIN n m = mk_UnIN' (n - m) end; fun is_refl_bool t = op aconv (HOLogic.dest_eq t) handle TERM _ => false; fun is_refl_prop t = op aconv (HOLogic.dest_eq (HOLogic.dest_Trueprop t)) handle TERM _ => false; val is_refl = is_refl_prop o Thm.prop_of; val is_concl_refl = is_refl_prop o Logic.strip_imp_concl o Thm.prop_of; val no_refl = filter_out is_refl; val no_reflexive = filter_out Thm.is_reflexive; end;