(* Title: HOL/Tools/BNF/bnf_lfp_rec_sugar.ML Author: Lorenz Panny, TU Muenchen Author: Jasmin Blanchette, TU Muenchen Copyright 2013 Recursor sugar ("primrec"). *) signature BNF_LFP_REC_SUGAR = sig datatype rec_option = Plugins_Option of Proof.context -> Plugin_Name.filter | Nonexhaustive_Option | Transfer_Option datatype rec_call = No_Rec of int * typ | Mutual_Rec of (int * typ) * (int * typ) | Nested_Rec of int * typ type rec_ctr_spec = {ctr: term, offset: int, calls: rec_call list, rec_thm: thm} type rec_spec = {recx: term, fp_nesting_map_ident0s: thm list, fp_nesting_map_comps: thm list, fp_nesting_pred_maps: thm list, ctr_specs: rec_ctr_spec list} type basic_lfp_sugar = {T: typ, fp_res_index: int, C: typ, fun_arg_Tsss : typ list list list, ctr_sugar: Ctr_Sugar.ctr_sugar, recx: term, rec_thms: thm list}; type lfp_rec_extension = {nested_simps: thm list, special_endgame_tac: Proof.context -> thm list -> thm list -> thm list -> tactic, is_new_datatype: Proof.context -> string -> bool, basic_lfp_sugars_of: binding list -> typ list -> term list -> (term * term list list) list list -> local_theory -> typ list * int list * basic_lfp_sugar list * thm list * thm list * thm list * thm * Token.src list * bool * local_theory, rewrite_nested_rec_call: (Proof.context -> (term -> bool) -> (string -> int) -> typ list -> term -> term -> term -> term) option}; val register_lfp_rec_extension: lfp_rec_extension -> theory -> theory val default_basic_lfp_sugars_of: binding list -> typ list -> term list -> (term * term list list) list list -> local_theory -> typ list * int list * basic_lfp_sugar list * thm list * thm list * thm list * thm * Token.src list * bool * local_theory val rec_specs_of: binding list -> typ list -> typ list -> term list -> (term * term list list) list list -> local_theory -> (bool * rec_spec list * typ list * thm * thm list * Token.src list * typ list) * local_theory val lfp_rec_sugar_interpretation: string -> (BNF_FP_Rec_Sugar_Util.fp_rec_sugar -> local_theory -> local_theory) -> theory -> theory val primrec: bool -> rec_option list -> (binding * typ option * mixfix) list -> Specification.multi_specs -> local_theory -> (term list * thm list * thm list list) * local_theory val primrec_cmd: bool -> rec_option list -> (binding * string option * mixfix) list -> Specification.multi_specs_cmd -> local_theory -> (term list * thm list * thm list list) * local_theory val primrec_global: bool -> rec_option list -> (binding * typ option * mixfix) list -> Specification.multi_specs -> theory -> (term list * thm list * thm list list) * theory val primrec_overloaded: bool -> rec_option list -> (string * (string * typ) * bool) list -> (binding * typ option * mixfix) list -> Specification.multi_specs -> theory -> (term list * thm list * thm list list) * theory val primrec_simple: bool -> ((binding * typ) * mixfix) list -> term list -> local_theory -> ((string list * (binding -> binding) list) * (term list * thm list * (int list list * thm list list))) * local_theory end; structure BNF_LFP_Rec_Sugar : BNF_LFP_REC_SUGAR = struct open Ctr_Sugar open Ctr_Sugar_Util open Ctr_Sugar_General_Tactics open BNF_FP_Rec_Sugar_Util val inductN = "induct"; val simpsN = "simps"; val nitpicksimp_attrs = @{attributes [nitpick_simp]}; val simp_attrs = @{attributes [simp]}; val nitpicksimp_simp_attrs = nitpicksimp_attrs @ simp_attrs; exception OLD_PRIMREC of unit; datatype rec_option = Plugins_Option of Proof.context -> Plugin_Name.filter | Nonexhaustive_Option | Transfer_Option; datatype rec_call = No_Rec of int * typ | Mutual_Rec of (int * typ) * (int * typ) | Nested_Rec of int * typ; type rec_ctr_spec = {ctr: term, offset: int, calls: rec_call list, rec_thm: thm}; type rec_spec = {recx: term, fp_nesting_map_ident0s: thm list, fp_nesting_map_comps: thm list, fp_nesting_pred_maps: thm list, ctr_specs: rec_ctr_spec list}; type basic_lfp_sugar = {T: typ, fp_res_index: int, C: typ, fun_arg_Tsss : typ list list list, ctr_sugar: ctr_sugar, recx: term, rec_thms: thm list}; type lfp_rec_extension = {nested_simps: thm list, special_endgame_tac: Proof.context -> thm list -> thm list -> thm list -> tactic, is_new_datatype: Proof.context -> string -> bool, basic_lfp_sugars_of: binding list -> typ list -> term list -> (term * term list list) list list -> local_theory -> typ list * int list * basic_lfp_sugar list * thm list * thm list * thm list * thm * Token.src list * bool * local_theory, rewrite_nested_rec_call: (Proof.context -> (term -> bool) -> (string -> int) -> typ list -> term -> term -> term -> term) option}; structure Data = Theory_Data ( type T = lfp_rec_extension option; val empty = NONE; val extend = I; val merge = merge_options; ); val register_lfp_rec_extension = Data.put o SOME; fun nested_simps ctxt = (case Data.get (Proof_Context.theory_of ctxt) of SOME {nested_simps, ...} => nested_simps | NONE => []); fun special_endgame_tac ctxt = (case Data.get (Proof_Context.theory_of ctxt) of SOME {special_endgame_tac, ...} => special_endgame_tac ctxt | NONE => K (K (K no_tac))); fun is_new_datatype ctxt = (case Data.get (Proof_Context.theory_of ctxt) of SOME {is_new_datatype, ...} => is_new_datatype ctxt | NONE => K true); fun default_basic_lfp_sugars_of _ [Type (arg_T_name, _)] _ _ ctxt = let val ctr_sugar as {T, ctrs, casex, case_thms, ...} = (case ctr_sugar_of ctxt arg_T_name of SOME ctr_sugar => ctr_sugar | NONE => error ("Unsupported type " ^ quote arg_T_name ^ " at this stage")); val C = body_type (fastype_of casex); val fun_arg_Tsss = map (map single o binder_types o fastype_of) ctrs; val basic_lfp_sugar = {T = T, fp_res_index = 0, C = C, fun_arg_Tsss = fun_arg_Tsss, ctr_sugar = ctr_sugar, recx = casex, rec_thms = case_thms}; in ([], [0], [basic_lfp_sugar], [], [], [], TrueI (*dummy*), [], false, ctxt) end | default_basic_lfp_sugars_of _ [T] _ _ ctxt = error ("Cannot recurse through type " ^ quote (Syntax.string_of_typ ctxt T)) | default_basic_lfp_sugars_of _ _ _ _ _ = error "Unsupported mutual recursion at this stage"; fun basic_lfp_sugars_of bs arg_Ts callers callssss lthy = (case Data.get (Proof_Context.theory_of lthy) of SOME {basic_lfp_sugars_of, ...} => basic_lfp_sugars_of | NONE => default_basic_lfp_sugars_of) bs arg_Ts callers callssss lthy; fun rewrite_nested_rec_call ctxt = (case Data.get (Proof_Context.theory_of ctxt) of SOME {rewrite_nested_rec_call = SOME f, ...} => f ctxt | _ => error "Unsupported nested recursion"); structure LFP_Rec_Sugar_Plugin = Plugin(type T = fp_rec_sugar); fun lfp_rec_sugar_interpretation name f = LFP_Rec_Sugar_Plugin.interpretation name (fn fp_rec_sugar => fn lthy => f (transfer_fp_rec_sugar (Proof_Context.theory_of lthy) fp_rec_sugar) lthy); val interpret_lfp_rec_sugar = LFP_Rec_Sugar_Plugin.data; fun rec_specs_of bs arg_Ts res_Ts callers callssss0 lthy0 = let val thy = Proof_Context.theory_of lthy0; val (missing_arg_Ts, perm0_kks, basic_lfp_sugars, fp_nesting_map_ident0s, fp_nesting_map_comps, fp_nesting_pred_maps, common_induct, induct_attrs, n2m, lthy) = basic_lfp_sugars_of bs arg_Ts callers callssss0 lthy0; val perm_basic_lfp_sugars = sort (int_ord o apply2 #fp_res_index) basic_lfp_sugars; val indices = map #fp_res_index basic_lfp_sugars; val perm_indices = map #fp_res_index perm_basic_lfp_sugars; val perm_ctrss = map (#ctrs o #ctr_sugar) perm_basic_lfp_sugars; val nn0 = length arg_Ts; val nn = length perm_ctrss; val kks = 0 upto nn - 1; val perm_ctr_offsets = map (fn kk => Integer.sum (map length (take kk perm_ctrss))) kks; val perm_fpTs = map #T perm_basic_lfp_sugars; val perm_Cs = map #C perm_basic_lfp_sugars; val perm_fun_arg_Tssss = map #fun_arg_Tsss perm_basic_lfp_sugars; fun unpermute0 perm0_xs = permute_like_unique (op =) perm0_kks kks perm0_xs; fun unpermute perm_xs = permute_like_unique (op =) perm_indices indices perm_xs; val inducts = unpermute0 (conj_dests nn common_induct); val fpTs = unpermute perm_fpTs; val Cs = unpermute perm_Cs; val ctr_offsets = unpermute perm_ctr_offsets; val As_rho = tvar_subst thy (take nn0 fpTs) arg_Ts; val Cs_rho = map (fst o dest_TVar) Cs ~~ pad_list HOLogic.unitT nn res_Ts; val substA = Term.subst_TVars As_rho; val substAT = Term.typ_subst_TVars As_rho; val substCT = Term.typ_subst_TVars Cs_rho; val substACT = substAT o substCT; val perm_Cs' = map substCT perm_Cs; fun call_of [i] [T] = (if exists_subtype_in Cs T then Nested_Rec else No_Rec) (i, substACT T) | call_of [i, i'] [T, T'] = Mutual_Rec ((i, substACT T), (i', substACT T')); fun mk_ctr_spec ctr offset fun_arg_Tss rec_thm = let val (fun_arg_hss, _) = indexedd fun_arg_Tss 0; val fun_arg_hs = flat_rec_arg_args fun_arg_hss; val fun_arg_iss = map (map (find_index_eq fun_arg_hs)) fun_arg_hss; in {ctr = substA ctr, offset = offset, calls = map2 call_of fun_arg_iss fun_arg_Tss, rec_thm = rec_thm} end; fun mk_ctr_specs fp_res_index k ctrs rec_thms = @{map 4} mk_ctr_spec ctrs (k upto k + length ctrs - 1) (nth perm_fun_arg_Tssss fp_res_index) rec_thms; fun mk_spec ctr_offset ({T, fp_res_index, ctr_sugar = {ctrs, ...}, recx, rec_thms, ...} : basic_lfp_sugar) = {recx = mk_co_rec thy Least_FP perm_Cs' (substAT T) recx, fp_nesting_map_ident0s = fp_nesting_map_ident0s, fp_nesting_map_comps = fp_nesting_map_comps, fp_nesting_pred_maps = fp_nesting_pred_maps, ctr_specs = mk_ctr_specs fp_res_index ctr_offset ctrs rec_thms}; in ((n2m, map2 mk_spec ctr_offsets basic_lfp_sugars, missing_arg_Ts, common_induct, inducts, induct_attrs, map #T basic_lfp_sugars), lthy) end; val undef_const = Const (\<^const_name>\undefined\, dummyT); type eqn_data = { fun_name: string, rec_type: typ, ctr: term, ctr_args: term list, left_args: term list, right_args: term list, res_type: typ, rhs_term: term, user_eqn: term }; fun dissect_eqn ctxt fun_names eqn0 = let val eqn = drop_all eqn0 |> HOLogic.dest_Trueprop handle TERM _ => ill_formed_equation_lhs_rhs ctxt [eqn0]; val (lhs, rhs) = HOLogic.dest_eq eqn handle TERM _ => ill_formed_equation_lhs_rhs ctxt [eqn]; val (fun_name, args) = strip_comb lhs |>> (fn x => if is_Free x then fst (dest_Free x) else ill_formed_equation_head ctxt [eqn]); val (left_args, rest) = chop_prefix is_Free args; val (nonfrees, right_args) = chop_suffix is_Free rest; val num_nonfrees = length nonfrees; val _ = num_nonfrees = 1 orelse (if num_nonfrees = 0 then missing_pattern ctxt [eqn] else more_than_one_nonvar_in_lhs ctxt [eqn]); val _ = member (op =) fun_names fun_name orelse raise ill_formed_equation_head ctxt [eqn]; val (ctr, ctr_args) = strip_comb (the_single nonfrees); val _ = try (num_binder_types o fastype_of) ctr = SOME (length ctr_args) orelse partially_applied_ctr_in_pattern ctxt [eqn]; val _ = check_duplicate_variables_in_lhs ctxt [eqn] (left_args @ ctr_args @ right_args) val _ = forall is_Free ctr_args orelse nonprimitive_pattern_in_lhs ctxt [eqn]; val _ = let val bads = fold_aterms (fn x as Free (v, _) => if (not (member (op =) (left_args @ ctr_args @ right_args) x) andalso not (member (op =) fun_names v) andalso not (Variable.is_fixed ctxt v)) then cons x else I | _ => I) rhs []; in null bads orelse extra_variable_in_rhs ctxt [eqn] (hd bads) end; in {fun_name = fun_name, rec_type = body_type (type_of ctr), ctr = ctr, ctr_args = ctr_args, left_args = left_args, right_args = right_args, res_type = map fastype_of (left_args @ right_args) ---> fastype_of rhs, rhs_term = rhs, user_eqn = eqn0} end; fun subst_rec_calls ctxt get_ctr_pos has_call ctr_args mutual_calls nested_calls = let fun try_nested_rec bound_Ts y t = AList.lookup (op =) nested_calls y |> Option.map (fn y' => rewrite_nested_rec_call ctxt has_call get_ctr_pos bound_Ts y y' t); fun subst bound_Ts (t as g' $ y) = let fun subst_comb (h $ z) = subst bound_Ts h $ subst bound_Ts z | subst_comb t = t; val y_head = head_of y; in if not (member (op =) ctr_args y_head) then subst_comb t else (case try_nested_rec bound_Ts y_head t of SOME t' => subst_comb t' | NONE => let val (g, g_args) = strip_comb g' in (case try (get_ctr_pos o fst o dest_Free) g of SOME ~1 => subst_comb t | SOME ctr_pos => (length g_args >= ctr_pos orelse too_few_args_in_rec_call ctxt [] t; (case AList.lookup (op =) mutual_calls y of SOME y' => list_comb (y', map (subst bound_Ts) g_args) | NONE => subst_comb t)) | NONE => subst_comb t) end) end | subst bound_Ts (Abs (v, T, b)) = Abs (v, T, subst (T :: bound_Ts) b) | subst _ t = t fun subst' t = if has_call t then rec_call_not_apply_to_ctr_arg ctxt [] t else try_nested_rec [] (head_of t) t |> the_default t; in subst' o subst [] end; fun build_rec_arg ctxt (funs_data : eqn_data list list) has_call (ctr_spec : rec_ctr_spec) (eqn_data_opt : eqn_data option) = (case eqn_data_opt of NONE => undef_const | SOME {ctr_args, left_args, right_args, rhs_term = t, ...} => let val calls = #calls ctr_spec; val n_args = fold (Integer.add o (fn Mutual_Rec _ => 2 | _ => 1)) calls 0; val no_calls' = tag_list 0 calls |> map_filter (try (apsnd (fn No_Rec p => p | Mutual_Rec (p, _) => p))); val mutual_calls' = tag_list 0 calls |> map_filter (try (apsnd (fn Mutual_Rec (_, p) => p))); val nested_calls' = tag_list 0 calls |> map_filter (try (apsnd (fn Nested_Rec p => p))); fun ensure_unique frees t = if member (op =) frees t then Free (the_single (Term.variant_frees t [dest_Free t])) else t; val args = replicate n_args ("", dummyT) |> Term.rename_wrt_term t |> map Free |> fold (fn (ctr_arg_idx, (arg_idx, _)) => nth_map arg_idx (K (nth ctr_args ctr_arg_idx))) no_calls' |> fold (fn (ctr_arg_idx, (arg_idx, T)) => fn xs => nth_map arg_idx (K (ensure_unique xs (retype_const_or_free T (nth ctr_args ctr_arg_idx)))) xs) mutual_calls' |> fold (fn (ctr_arg_idx, (arg_idx, T)) => nth_map arg_idx (K (retype_const_or_free T (nth ctr_args ctr_arg_idx)))) nested_calls'; val fun_name_ctr_pos_list = map (fn (x :: _) => (#fun_name x, length (#left_args x))) funs_data; val get_ctr_pos = try (the o AList.lookup (op =) fun_name_ctr_pos_list) #> the_default ~1; val mutual_calls = map (map_prod (nth ctr_args) (nth args o fst)) mutual_calls'; val nested_calls = map (map_prod (nth ctr_args) (nth args o fst)) nested_calls'; in t |> subst_rec_calls ctxt get_ctr_pos has_call ctr_args mutual_calls nested_calls |> fold_rev lambda (args @ left_args @ right_args) end); fun build_defs ctxt nonexhaustives bs mxs (funs_data : eqn_data list list) (rec_specs : rec_spec list) has_call = let val n_funs = length funs_data; val ctr_spec_eqn_data_list' = maps (fn ((xs, ys), z) => let val zs = replicate (length xs) z; val (b, c) = finds (fn ((x, _), y) => #ctr x = #ctr y) (xs ~~ zs) ys; val _ = null c orelse excess_equations ctxt (map #rhs_term c); in b end) (map #ctr_specs (take n_funs rec_specs) ~~ funs_data ~~ nonexhaustives); val (_ : unit list) = ctr_spec_eqn_data_list' |> map (fn (({ctr, ...}, nonexhaustive), x) => if length x > 1 then multiple_equations_for_ctr ctxt (map #user_eqn x) else if length x = 1 orelse nonexhaustive orelse not (Context_Position.is_visible ctxt) then () else no_equation_for_ctr_warning ctxt [] ctr); val ctr_spec_eqn_data_list = map (apfst fst) ctr_spec_eqn_data_list' @ (drop n_funs rec_specs |> maps #ctr_specs |> map (rpair [])); val recs = take n_funs rec_specs |> map #recx; val rec_args = ctr_spec_eqn_data_list |> sort (op < o apply2 (#offset o fst) |> make_ord) |> map (uncurry (build_rec_arg ctxt funs_data has_call) o apsnd (try the_single)); val ctr_poss = map (fn x => if length (distinct (op = o apply2 (length o #left_args)) x) <> 1 then inconstant_pattern_pos_for_fun ctxt [] (#fun_name (hd x)) else hd x |> #left_args |> length) funs_data; in (recs, ctr_poss) |-> map2 (fn recx => fn ctr_pos => list_comb (recx, rec_args) |> permute_args ctr_pos) |> Syntax.check_terms ctxt |> @{map 3} (fn b => fn mx => fn t => ((b, mx), ((Binding.concealed (Thm.def_binding b), []), t))) bs mxs end; fun find_rec_calls has_call ({ctr, ctr_args, rhs_term, ...} : eqn_data) = let fun find bound_Ts (Abs (_, T, b)) ctr_arg = find (T :: bound_Ts) b ctr_arg | find bound_Ts (t as _ $ _) ctr_arg = let val typof = curry fastype_of1 bound_Ts; val (f', args') = strip_comb t; val n = find_index (equal ctr_arg o head_of) args'; in if n < 0 then find bound_Ts f' ctr_arg @ maps (fn x => find bound_Ts x ctr_arg) args' else let val (f, args as arg :: _) = chop n args' |>> curry list_comb f' val (arg_head, arg_args) = Term.strip_comb arg; in if has_call f then mk_partial_compN (length arg_args) (typof arg_head) f :: maps (fn x => find bound_Ts x ctr_arg) args else find bound_Ts f ctr_arg @ maps (fn x => find bound_Ts x ctr_arg) args end end | find _ _ _ = []; in map (find [] rhs_term) ctr_args |> (fn [] => NONE | callss => SOME (ctr, callss)) end; fun mk_primrec_tac ctxt num_extra_args fp_nesting_map_ident0s fp_nesting_map_comps fp_nesting_pred_maps fun_defs recx = unfold_thms_tac ctxt fun_defs THEN HEADGOAL (rtac ctxt (funpow num_extra_args (fn thm => thm RS fun_cong) recx RS trans)) THEN unfold_thms_tac ctxt (nested_simps ctxt @ fp_nesting_map_ident0s @ fp_nesting_map_comps @ fp_nesting_pred_maps) THEN REPEAT_DETERM (HEADGOAL (rtac ctxt refl) ORELSE special_endgame_tac ctxt fp_nesting_map_ident0s fp_nesting_map_comps fp_nesting_pred_maps); fun prepare_primrec plugins nonexhaustives transfers fixes specs lthy0 = let val thy = Proof_Context.theory_of lthy0; val (bs, mxs) = map_split (apfst fst) fixes; val fun_names = map Binding.name_of bs; val qualifys = map (fold_rev (uncurry Binding.qualify o swap) o Binding.path_of) bs; val eqns_data = map (dissect_eqn lthy0 fun_names) specs; val funs_data = eqns_data |> partition_eq (op = o apply2 #fun_name) |> finds (fn (x, y) => x = #fun_name (hd y)) fun_names |> fst |> map (fn (x, y) => the_single y handle List.Empty => missing_equations_for_fun x); val frees = map (fst #>> Binding.name_of #> Free) fixes; val has_call = exists_subterm (member (op =) frees); val arg_Ts = map (#rec_type o hd) funs_data; val res_Ts = map (#res_type o hd) funs_data; val callssss = funs_data |> map (partition_eq (op = o apply2 #ctr)) |> map (maps (map_filter (find_rec_calls has_call))); fun is_only_old_datatype (Type (s, _)) = is_some (Old_Datatype_Data.get_info thy s) andalso not (is_new_datatype lthy0 s) | is_only_old_datatype _ = false; val _ = if exists is_only_old_datatype arg_Ts then raise OLD_PRIMREC () else (); val _ = List.app (uncurry (check_top_sort lthy0)) (bs ~~ res_Ts); val ((n2m, rec_specs, _, common_induct, inducts, induct_attrs, Ts), lthy) = rec_specs_of bs arg_Ts res_Ts frees callssss lthy0; val actual_nn = length funs_data; val ctrs = maps (map #ctr o #ctr_specs) rec_specs; val _ = List.app (fn {ctr, user_eqn, ...} => ignore (member (op =) ctrs ctr orelse not_constructor_in_pattern lthy0 [user_eqn] ctr)) eqns_data; val defs = build_defs lthy nonexhaustives bs mxs funs_data rec_specs has_call; fun prove def_thms ({ctr_specs, fp_nesting_map_ident0s, fp_nesting_map_comps, fp_nesting_pred_maps, ...} : rec_spec) (fun_data : eqn_data list) lthy' = let val js = find_indices (op = o apply2 (fn {fun_name, ctr, ...} => (fun_name, ctr))) fun_data eqns_data; val simps = finds (fn (x, y) => #ctr x = #ctr y) fun_data ctr_specs |> fst |> map_filter (try (fn (x, [y]) => (#user_eqn x, length (#left_args x) + length (#right_args x), #rec_thm y))) |> map (fn (user_eqn, num_extra_args, rec_thm) => Goal.prove_sorry lthy' [] [] user_eqn (fn {context = ctxt, prems = _} => mk_primrec_tac ctxt num_extra_args fp_nesting_map_ident0s fp_nesting_map_comps fp_nesting_pred_maps def_thms rec_thm) |> Thm.close_derivation \<^here>); in ((js, simps), lthy') end; val notes = (if n2m then @{map 3} (fn name => fn qualify => fn thm => (name, qualify, inductN, [thm], induct_attrs)) fun_names qualifys (take actual_nn inducts) else []) |> map (fn (prefix, qualify, thmN, thms, attrs) => ((qualify (Binding.qualify true prefix (Binding.name thmN)), attrs), [(thms, [])])); val common_name = mk_common_name fun_names; val common_qualify = fold_rev I qualifys; val common_notes = (if n2m then [(inductN, [common_induct], [])] else []) |> map (fn (thmN, thms, attrs) => ((common_qualify (Binding.qualify true common_name (Binding.name thmN)), attrs), [(thms, [])])); in (((fun_names, qualifys, arg_Ts, defs), fn lthy => fn defs => let val def_thms = map (snd o snd) defs; val ts = map fst defs; val phi = Local_Theory.target_morphism lthy; val fp_rec_sugar = {transfers = transfers, fun_names = fun_names, funs = map (Morphism.term phi) ts, fun_defs = Morphism.fact phi def_thms, fpTs = take actual_nn Ts}; in map_prod split_list (interpret_lfp_rec_sugar plugins fp_rec_sugar) (@{fold_map 2} (prove (map (snd o snd) defs)) (take actual_nn rec_specs) funs_data lthy) end), lthy |> Local_Theory.notes (notes @ common_notes) |> snd) end; fun primrec_simple0 int plugins nonexhaustive transfer fixes ts lthy = let val _ = check_duplicate_const_names (map (fst o fst) fixes); val actual_nn = length fixes; val nonexhaustives = replicate actual_nn nonexhaustive; val transfers = replicate actual_nn transfer; val (((names, qualifys, arg_Ts, defs), prove), lthy') = prepare_primrec plugins nonexhaustives transfers fixes ts lthy; in lthy' |> fold_map Local_Theory.define defs |> tap (uncurry (print_def_consts int)) |-> (fn defs => fn lthy => let val ((jss, simpss), lthy) = prove lthy defs; val res = {prefix = (names, qualifys), types = map (#1 o dest_Type) arg_Ts, result = (map fst defs, map (snd o snd) defs, (jss, simpss))}; in (res, lthy) end) end; fun primrec_simple int fixes ts lthy = primrec_simple0 int Plugin_Name.default_filter false false fixes ts lthy |>> (fn {prefix, result, ...} => (prefix, result)) handle OLD_PRIMREC () => Old_Primrec.primrec_simple int fixes ts lthy |>> (fn {prefix, result = (ts, thms), ...} => (map_split (rpair I) [prefix], (ts, [], ([], [thms])))) fun gen_primrec old_primrec prep_spec int opts raw_fixes raw_specs lthy = let val plugins = get_first (fn Plugins_Option f => SOME (f lthy) | _ => NONE) (rev opts) |> the_default Plugin_Name.default_filter; val nonexhaustive = exists (can (fn Nonexhaustive_Option => ())) opts; val transfer = exists (can (fn Transfer_Option => ())) opts; val (fixes, specs) = fst (prep_spec raw_fixes raw_specs lthy); val spec_name = Binding.conglomerate (map (#1 o #1) fixes); val mk_notes = flat oooo @{map 4} (fn js => fn prefix => fn qualify => fn thms => let val (bs, attrss) = map_split (fst o nth specs) js; val notes = @{map 3} (fn b => fn attrs => fn thm => ((Binding.qualify false prefix b, nitpicksimp_simp_attrs @ attrs), [([thm], [])])) bs attrss thms; in ((qualify (Binding.qualify true prefix (Binding.name simpsN)), []), [(thms, [])]) :: notes end); in lthy |> primrec_simple0 int plugins nonexhaustive transfer fixes (map snd specs) |-> (fn {prefix = (names, qualifys), types, result = (ts, defs, (jss, simpss))} => Spec_Rules.add spec_name (Spec_Rules.equational_primrec types) ts (flat simpss) #> Local_Theory.notes (mk_notes jss names qualifys simpss) #-> (fn notes => plugins code_plugin ? Code.declare_default_eqns (map (rpair true) (maps snd notes)) #> pair (ts, defs, map_filter (fn ("", _) => NONE | (_, thms) => SOME thms) notes))) end handle OLD_PRIMREC () => old_primrec int raw_fixes raw_specs lthy |>> (fn {result = (ts, thms), ...} => (ts, [], [thms])); val primrec = gen_primrec Old_Primrec.primrec Specification.check_multi_specs; val primrec_cmd = gen_primrec Old_Primrec.primrec_cmd Specification.read_multi_specs; fun primrec_global int opts fixes specs = Named_Target.theory_init #> primrec int opts fixes specs ##> Local_Theory.exit_global; fun primrec_overloaded int opts ops fixes specs = Overloading.overloading ops #> primrec int opts fixes specs ##> Local_Theory.exit_global; val rec_option_parser = Parse.group (K "option") (Plugin_Name.parse_filter >> Plugins_Option || Parse.reserved "nonexhaustive" >> K Nonexhaustive_Option || Parse.reserved "transfer" >> K Transfer_Option); val _ = Outer_Syntax.local_theory \<^command_keyword>\primrec\ "define primitive recursive functions" ((Scan.optional (\<^keyword>\(\ |-- Parse.!!! (Parse.list1 rec_option_parser) --| \<^keyword>\)\) []) -- Parse_Spec.specification >> (fn (opts, (fixes, specs)) => snd o primrec_cmd true opts fixes specs)); end;