(* Title: HOL/Tools/BNF/bnf_comp_tactics.ML Author: Dmitriy Traytel, TU Muenchen Author: Jasmin Blanchette, TU Muenchen Copyright 2012 Tactics for composition of bounded natural functors. *) signature BNF_COMP_TACTICS = sig val mk_comp_bd_card_order_tac: Proof.context -> thm list -> thm -> tactic val mk_comp_bd_cinfinite_tac: Proof.context -> thm -> thm -> tactic val mk_comp_in_alt_tac: Proof.context -> thm list -> tactic val mk_comp_map_comp0_tac: Proof.context -> thm -> thm -> thm list -> tactic val mk_comp_map_cong0_tac: Proof.context -> thm list -> thm list -> thm -> thm list -> tactic val mk_comp_map_id0_tac: Proof.context -> thm -> thm -> thm list -> tactic val mk_comp_set_alt_tac: Proof.context -> thm -> tactic val mk_comp_set_bd_tac: Proof.context -> thm -> thm option -> thm -> thm list -> tactic val mk_comp_set_map0_tac: Proof.context -> thm -> thm -> thm -> thm -> thm list -> tactic val mk_comp_wit_tac: Proof.context -> thm list -> thm list -> thm -> thm list -> tactic val kill_in_alt_tac: Proof.context -> tactic val mk_kill_map_cong0_tac: Proof.context -> int -> int -> thm -> tactic val empty_natural_tac: Proof.context -> tactic val lift_in_alt_tac: Proof.context -> tactic val mk_lift_set_bd_tac: Proof.context -> thm -> tactic val mk_permute_in_alt_tac: Proof.context -> ''a list -> ''a list -> tactic val mk_le_rel_OO_tac: Proof.context -> thm -> thm -> thm list -> tactic val mk_simple_rel_OO_Grp_tac: Proof.context -> thm -> thm -> tactic val mk_simple_pred_set_tac: Proof.context -> thm -> thm -> tactic val mk_simple_wit_tac: Proof.context -> thm list -> tactic val mk_simplified_set_tac: Proof.context -> thm -> tactic val bd_ordIso_natLeq_tac: Proof.context -> tactic end; structure BNF_Comp_Tactics : BNF_COMP_TACTICS = struct open BNF_Util open BNF_Tactics val arg_cong_Union = @{thm arg_cong[of _ _ Union]}; val comp_eq_dest_lhs = @{thm comp_eq_dest_lhs}; val trans_image_cong_o_apply = @{thm trans[OF image_cong[OF o_apply refl]]}; val trans_o_apply = @{thm trans[OF o_apply]}; (* Composition *) fun mk_comp_set_alt_tac ctxt collect_set_map = unfold_thms_tac ctxt @{thms comp_assoc} THEN unfold_thms_tac ctxt [collect_set_map RS sym] THEN rtac ctxt refl 1; fun mk_comp_map_id0_tac ctxt Gmap_id0 Gmap_cong0 map_id0s = EVERY' ([rtac ctxt @{thm ext}, rtac ctxt (Gmap_cong0 RS trans)] @ map (fn thm => rtac ctxt (thm RS fun_cong)) map_id0s @ [rtac ctxt (Gmap_id0 RS fun_cong)]) 1; fun mk_comp_map_comp0_tac ctxt Gmap_comp0 Gmap_cong0 map_comp0s = EVERY' ([rtac ctxt @{thm ext}, rtac ctxt sym, rtac ctxt trans_o_apply, rtac ctxt (Gmap_comp0 RS sym RS comp_eq_dest_lhs RS trans), rtac ctxt Gmap_cong0] @ map (fn thm => rtac ctxt (thm RS sym RS fun_cong)) map_comp0s) 1; fun mk_comp_set_map0_tac ctxt set'_eq_set Gmap_comp0 Gmap_cong0 Gset_map0 set_map0s = unfold_thms_tac ctxt [set'_eq_set] THEN EVERY' ([rtac ctxt @{thm ext}] @ replicate 3 (rtac ctxt trans_o_apply) @ [rtac ctxt (arg_cong_Union RS trans), rtac ctxt (@{thm arg_cong2[of _ _ _ _ collect, OF refl]} RS trans), rtac ctxt (Gmap_comp0 RS sym RS comp_eq_dest_lhs RS trans), rtac ctxt Gmap_cong0] @ map (fn thm => rtac ctxt (thm RS fun_cong)) set_map0s @ [rtac ctxt (Gset_map0 RS comp_eq_dest_lhs), rtac ctxt sym, rtac ctxt trans_o_apply, rtac ctxt trans_image_cong_o_apply, rtac ctxt trans_image_cong_o_apply, rtac ctxt (@{thm image_cong} OF [Gset_map0 RS comp_eq_dest_lhs RS arg_cong_Union, refl] RS trans), rtac ctxt @{thm trans[OF comp_eq_dest[OF Union_natural[symmetric]]]}, rtac ctxt arg_cong_Union, rtac ctxt @{thm trans[OF comp_eq_dest_lhs[OF image_o_collect[symmetric]]]}, rtac ctxt @{thm fun_cong[OF arg_cong[of _ _ collect]]}] @ [REPEAT_DETERM_N (length set_map0s) o EVERY' [rtac ctxt @{thm trans[OF image_insert]}, rtac ctxt @{thm arg_cong2[of _ _ _ _ insert]}, rtac ctxt @{thm ext}, rtac ctxt trans_o_apply, rtac ctxt trans_image_cong_o_apply, rtac ctxt @{thm trans[OF image_image]}, rtac ctxt @{thm sym[OF trans[OF o_apply]]}, rtac ctxt @{thm image_cong[OF refl o_apply]}], rtac ctxt @{thm image_empty}]) 1; fun mk_comp_map_cong0_tac ctxt set'_eq_sets comp_set_alts map_cong0 map_cong0s = let val n = length comp_set_alts; in unfold_thms_tac ctxt set'_eq_sets THEN (if n = 0 then rtac ctxt refl 1 else rtac ctxt map_cong0 1 THEN EVERY' (map_index (fn (i, map_cong0) => rtac ctxt map_cong0 THEN' EVERY' (map_index (fn (k, set_alt) => EVERY' [select_prem_tac ctxt n (dtac ctxt @{thm meta_spec}) (k + 1), etac ctxt meta_mp, rtac ctxt (equalityD2 RS set_mp), rtac ctxt (set_alt RS fun_cong RS trans), rtac ctxt trans_o_apply, rtac ctxt (@{thm collect_def} RS arg_cong_Union), rtac ctxt @{thm UnionI}, rtac ctxt @{thm UN_I}, REPEAT_DETERM_N i o rtac ctxt @{thm insertI2}, rtac ctxt @{thm insertI1}, rtac ctxt (o_apply RS equalityD2 RS set_mp), etac ctxt @{thm imageI}, assume_tac ctxt]) comp_set_alts)) map_cong0s) 1) end; fun mk_comp_bd_card_order_tac ctxt Fbd_card_orders Gbd_card_order = rtac ctxt @{thm natLeq_card_order} 1 ORELSE let val (card_orders, last_card_order) = split_last Fbd_card_orders; fun gen_before thm = rtac ctxt @{thm card_order_csum} THEN' rtac ctxt thm; in (rtac ctxt @{thm card_order_cprod} THEN' WRAP' gen_before (K (K all_tac)) card_orders (rtac ctxt last_card_order) THEN' rtac ctxt Gbd_card_order) 1 end; fun mk_comp_bd_cinfinite_tac ctxt Fbd_cinfinite Gbd_cinfinite = (rtac ctxt @{thm natLeq_cinfinite} ORELSE' rtac ctxt @{thm cinfinite_cprod} THEN' ((K (TRY ((rtac ctxt @{thm cinfinite_csum} THEN' rtac ctxt disjI1) 1)) THEN' ((rtac ctxt @{thm cinfinite_csum} THEN' rtac ctxt disjI1 THEN' rtac ctxt Fbd_cinfinite) ORELSE' rtac ctxt Fbd_cinfinite)) ORELSE' rtac ctxt Fbd_cinfinite) THEN' rtac ctxt Gbd_cinfinite) 1; fun mk_comp_set_bd_tac ctxt set'_eq_set bd_ordIso_natLeq_opt comp_set_alt Gset_Fset_bds = let val (bds, last_bd) = split_last Gset_Fset_bds; fun gen_before bd = rtac ctxt ctrans THEN' rtac ctxt @{thm Un_csum} THEN' rtac ctxt ctrans THEN' rtac ctxt @{thm csum_mono} THEN' rtac ctxt bd; fun gen_after _ = rtac ctxt @{thm ordIso_imp_ordLeq} THEN' rtac ctxt @{thm cprod_csum_distrib1}; in (case bd_ordIso_natLeq_opt of SOME thm => rtac ctxt (thm RSN (2, @{thm ordLeq_ordIso_trans})) 1 | NONE => all_tac) THEN unfold_thms_tac ctxt [set'_eq_set, comp_set_alt] THEN rtac ctxt @{thm comp_set_bd_Union_o_collect} 1 THEN unfold_thms_tac ctxt @{thms Union_image_insert Union_image_empty Union_Un_distrib o_apply} THEN (rtac ctxt ctrans THEN' WRAP' gen_before gen_after bds (rtac ctxt last_bd) THEN' rtac ctxt @{thm ordIso_imp_ordLeq} THEN' rtac ctxt @{thm cprod_com}) 1 end; val comp_in_alt_thms = @{thms o_apply collect_def image_insert image_empty Union_insert UN_insert UN_empty Union_empty Un_empty_right Union_Un_distrib Un_subset_iff conj_subset_def UN_image_subset conj_assoc}; fun mk_comp_in_alt_tac ctxt comp_set_alts = unfold_thms_tac ctxt comp_set_alts THEN unfold_thms_tac ctxt comp_in_alt_thms THEN unfold_thms_tac ctxt @{thms set_eq_subset} THEN rtac ctxt conjI 1 THEN REPEAT_DETERM ( rtac ctxt @{thm subsetI} 1 THEN unfold_thms_tac ctxt @{thms mem_Collect_eq Ball_def} THEN (REPEAT_DETERM (CHANGED (etac ctxt conjE 1)) THEN REPEAT_DETERM (CHANGED (( (rtac ctxt conjI THEN' (assume_tac ctxt ORELSE' rtac ctxt subset_UNIV)) ORELSE' assume_tac ctxt ORELSE' (rtac ctxt subset_UNIV)) 1)) ORELSE rtac ctxt subset_UNIV 1)); val comp_wit_thms = @{thms Union_empty_conv o_apply collect_def UN_insert UN_empty Un_empty_right Union_image_insert Union_image_empty}; fun mk_comp_wit_tac ctxt set'_eq_sets Gwit_thms collect_set_map Fwit_thms = unfold_thms_tac ctxt set'_eq_sets THEN ALLGOALS (dtac ctxt @{thm in_Union_o_assoc}) THEN unfold_thms_tac ctxt [collect_set_map] THEN unfold_thms_tac ctxt comp_wit_thms THEN REPEAT_DETERM ((assume_tac ctxt ORELSE' REPEAT_DETERM o eresolve_tac ctxt @{thms UnionE UnE} THEN' etac ctxt imageE THEN' TRY o dresolve_tac ctxt Gwit_thms THEN' (etac ctxt FalseE ORELSE' hyp_subst_tac ctxt THEN' dresolve_tac ctxt Fwit_thms THEN' (etac ctxt FalseE ORELSE' assume_tac ctxt))) 1); (* Kill operation *) fun mk_kill_map_cong0_tac ctxt n m map_cong0 = (rtac ctxt map_cong0 THEN' EVERY' (replicate n (rtac ctxt refl)) THEN' EVERY' (replicate m (Goal.assume_rule_tac ctxt))) 1; fun kill_in_alt_tac ctxt = ((rtac ctxt @{thm Collect_cong} THEN' rtac ctxt iffI) 1 THEN REPEAT_DETERM (CHANGED (etac ctxt conjE 1)) THEN REPEAT_DETERM (CHANGED ((etac ctxt conjI ORELSE' rtac ctxt conjI THEN' rtac ctxt subset_UNIV) 1)) THEN (rtac ctxt subset_UNIV ORELSE' assume_tac ctxt) 1 THEN REPEAT_DETERM (CHANGED (etac ctxt conjE 1)) THEN REPEAT_DETERM (CHANGED ((etac ctxt conjI ORELSE' assume_tac ctxt) 1))) ORELSE ((rtac ctxt @{thm UNIV_eq_I} THEN' rtac ctxt CollectI) 1 THEN REPEAT_DETERM (TRY (rtac ctxt conjI 1) THEN rtac ctxt subset_UNIV 1)); (* Lift operation *) fun empty_natural_tac ctxt = rtac ctxt @{thm empty_natural} 1; fun mk_lift_set_bd_tac ctxt bd_Card_order = (rtac ctxt @{thm Card_order_empty} THEN' rtac ctxt bd_Card_order) 1; fun lift_in_alt_tac ctxt = ((rtac ctxt @{thm Collect_cong} THEN' rtac ctxt iffI) 1 THEN REPEAT_DETERM (CHANGED (etac ctxt conjE 1)) THEN REPEAT_DETERM (CHANGED ((etac ctxt conjI ORELSE' assume_tac ctxt) 1)) THEN REPEAT_DETERM (CHANGED (etac ctxt conjE 1)) THEN REPEAT_DETERM (CHANGED ((etac ctxt conjI ORELSE' rtac ctxt conjI THEN' rtac ctxt @{thm empty_subsetI}) 1)) THEN (rtac ctxt @{thm empty_subsetI} ORELSE' assume_tac ctxt) 1) ORELSE ((rtac ctxt sym THEN' rtac ctxt @{thm UNIV_eq_I} THEN' rtac ctxt CollectI) 1 THEN REPEAT_DETERM (TRY (rtac ctxt conjI 1) THEN rtac ctxt @{thm empty_subsetI} 1)); (* Permute operation *) fun mk_permute_in_alt_tac ctxt src dest = (rtac ctxt @{thm Collect_cong} THEN' mk_rotate_eq_tac ctxt (rtac ctxt refl) trans @{thm conj_assoc} @{thm conj_commute} @{thm conj_cong} dest src) 1; (* Miscellaneous *) fun mk_le_rel_OO_tac ctxt outer_le_rel_OO outer_rel_mono inner_le_rel_OOs = HEADGOAL (EVERY' (map (rtac ctxt) (@{thm order_trans} :: outer_le_rel_OO :: outer_rel_mono :: inner_le_rel_OOs))); fun mk_simple_rel_OO_Grp_tac ctxt rel_OO_Grp in_alt_thm = HEADGOAL (rtac ctxt (trans OF [rel_OO_Grp, in_alt_thm RS @{thm OO_Grp_cong} RS sym])); fun mk_simple_pred_set_tac ctxt pred_set in_alt_thm = HEADGOAL (rtac ctxt (pred_set RS trans)) THEN unfold_thms_tac ctxt @{thms Ball_Collect UNIV_def} THEN HEADGOAL (rtac ctxt (unfold_thms ctxt @{thms UNIV_def} in_alt_thm RS @{thm Collect_inj} RS sym)); fun mk_simple_wit_tac ctxt wit_thms = ALLGOALS (assume_tac ctxt ORELSE' eresolve_tac ctxt (@{thm emptyE} :: wit_thms)); val csum_thms = @{thms csum_cong1 csum_cong2 csum_cong csum_dup[OF natLeq_cinfinite natLeq_Card_order]}; val cprod_thms = @{thms cprod_cong1 cprod_cong2 cprod_cong cprod_dup[OF natLeq_cinfinite natLeq_Card_order]}; val simplified_set_simps = @{thms collect_def[abs_def] UN_insert UN_empty Un_empty_right Un_empty_left o_def Union_Un_distrib UN_empty2 UN_singleton id_bnf_def}; fun mk_simplified_set_tac ctxt collect_set_map = unfold_thms_tac ctxt (collect_set_map :: @{thms comp_assoc}) THEN unfold_thms_tac ctxt simplified_set_simps THEN rtac ctxt refl 1; fun bd_ordIso_natLeq_tac ctxt = HEADGOAL (REPEAT_DETERM o resolve_tac ctxt (@{thm ordIso_refl[OF natLeq_Card_order]} :: csum_thms @ cprod_thms)); end;