(* Title: HOL/Real.thy Author: Jacques D. Fleuriot, University of Edinburgh, 1998 Author: Larry Paulson, University of Cambridge Author: Jeremy Avigad, Carnegie Mellon University Author: Florian Zuleger, Johannes Hoelzl, and Simon Funke, TU Muenchen Conversion to Isar and new proofs by Lawrence C Paulson, 2003/4 Construction of Cauchy Reals by Brian Huffman, 2010 *) section \Development of the Reals using Cauchy Sequences\ theory Real imports Rat begin text \ This theory contains a formalization of the real numbers as equivalence classes of Cauchy sequences of rationals. See \<^file>\~~/src/HOL/ex/Dedekind_Real.thy\ for an alternative construction using Dedekind cuts. \ subsection \Preliminary lemmas\ text\Useful in convergence arguments\ lemma inverse_of_nat_le: fixes n::nat shows "\n \ m; n\0\ \ 1 / of_nat m \ (1::'a::linordered_field) / of_nat n" by (simp add: frac_le) lemma add_diff_add: "(a + c) - (b + d) = (a - b) + (c - d)" for a b c d :: "'a::ab_group_add" by simp lemma minus_diff_minus: "- a - - b = - (a - b)" for a b :: "'a::ab_group_add" by simp lemma mult_diff_mult: "(x * y - a * b) = x * (y - b) + (x - a) * b" for x y a b :: "'a::ring" by (simp add: algebra_simps) lemma inverse_diff_inverse: fixes a b :: "'a::division_ring" assumes "a \ 0" and "b \ 0" shows "inverse a - inverse b = - (inverse a * (a - b) * inverse b)" using assms by (simp add: algebra_simps) lemma obtain_pos_sum: fixes r :: rat assumes r: "0 < r" obtains s t where "0 < s" and "0 < t" and "r = s + t" proof from r show "0 < r/2" by simp from r show "0 < r/2" by simp show "r = r/2 + r/2" by simp qed subsection \Sequences that converge to zero\ definition vanishes :: "(nat \ rat) \ bool" where "vanishes X \ (\r>0. \k. \n\k. \X n\ < r)" lemma vanishesI: "(\r. 0 < r \ \k. \n\k. \X n\ < r) \ vanishes X" unfolding vanishes_def by simp lemma vanishesD: "vanishes X \ 0 < r \ \k. \n\k. \X n\ < r" unfolding vanishes_def by simp lemma vanishes_const [simp]: "vanishes (\n. c) \ c = 0" proof (cases "c = 0") case True then show ?thesis by (simp add: vanishesI) next case False then show ?thesis unfolding vanishes_def using zero_less_abs_iff by blast qed lemma vanishes_minus: "vanishes X \ vanishes (\n. - X n)" unfolding vanishes_def by simp lemma vanishes_add: assumes X: "vanishes X" and Y: "vanishes Y" shows "vanishes (\n. X n + Y n)" proof (rule vanishesI) fix r :: rat assume "0 < r" then obtain s t where s: "0 < s" and t: "0 < t" and r: "r = s + t" by (rule obtain_pos_sum) obtain i where i: "\n\i. \X n\ < s" using vanishesD [OF X s] .. obtain j where j: "\n\j. \Y n\ < t" using vanishesD [OF Y t] .. have "\n\max i j. \X n + Y n\ < r" proof clarsimp fix n assume n: "i \ n" "j \ n" have "\X n + Y n\ \ \X n\ + \Y n\" by (rule abs_triangle_ineq) also have "\ < s + t" by (simp add: add_strict_mono i j n) finally show "\X n + Y n\ < r" by (simp only: r) qed then show "\k. \n\k. \X n + Y n\ < r" .. qed lemma vanishes_diff: assumes "vanishes X" "vanishes Y" shows "vanishes (\n. X n - Y n)" unfolding diff_conv_add_uminus by (intro vanishes_add vanishes_minus assms) lemma vanishes_mult_bounded: assumes X: "\a>0. \n. \X n\ < a" assumes Y: "vanishes (\n. Y n)" shows "vanishes (\n. X n * Y n)" proof (rule vanishesI) fix r :: rat assume r: "0 < r" obtain a where a: "0 < a" "\n. \X n\ < a" using X by blast obtain b where b: "0 < b" "r = a * b" proof show "0 < r / a" using r a by simp show "r = a * (r / a)" using a by simp qed obtain k where k: "\n\k. \Y n\ < b" using vanishesD [OF Y b(1)] .. have "\n\k. \X n * Y n\ < r" by (simp add: b(2) abs_mult mult_strict_mono' a k) then show "\k. \n\k. \X n * Y n\ < r" .. qed subsection \Cauchy sequences\ definition cauchy :: "(nat \ rat) \ bool" where "cauchy X \ (\r>0. \k. \m\k. \n\k. \X m - X n\ < r)" lemma cauchyI: "(\r. 0 < r \ \k. \m\k. \n\k. \X m - X n\ < r) \ cauchy X" unfolding cauchy_def by simp lemma cauchyD: "cauchy X \ 0 < r \ \k. \m\k. \n\k. \X m - X n\ < r" unfolding cauchy_def by simp lemma cauchy_const [simp]: "cauchy (\n. x)" unfolding cauchy_def by simp lemma cauchy_add [simp]: assumes X: "cauchy X" and Y: "cauchy Y" shows "cauchy (\n. X n + Y n)" proof (rule cauchyI) fix r :: rat assume "0 < r" then obtain s t where s: "0 < s" and t: "0 < t" and r: "r = s + t" by (rule obtain_pos_sum) obtain i where i: "\m\i. \n\i. \X m - X n\ < s" using cauchyD [OF X s] .. obtain j where j: "\m\j. \n\j. \Y m - Y n\ < t" using cauchyD [OF Y t] .. have "\m\max i j. \n\max i j. \(X m + Y m) - (X n + Y n)\ < r" proof clarsimp fix m n assume *: "i \ m" "j \ m" "i \ n" "j \ n" have "\(X m + Y m) - (X n + Y n)\ \ \X m - X n\ + \Y m - Y n\" unfolding add_diff_add by (rule abs_triangle_ineq) also have "\ < s + t" by (rule add_strict_mono) (simp_all add: i j *) finally show "\(X m + Y m) - (X n + Y n)\ < r" by (simp only: r) qed then show "\k. \m\k. \n\k. \(X m + Y m) - (X n + Y n)\ < r" .. qed lemma cauchy_minus [simp]: assumes X: "cauchy X" shows "cauchy (\n. - X n)" using assms unfolding cauchy_def unfolding minus_diff_minus abs_minus_cancel . lemma cauchy_diff [simp]: assumes "cauchy X" "cauchy Y" shows "cauchy (\n. X n - Y n)" using assms unfolding diff_conv_add_uminus by (simp del: add_uminus_conv_diff) lemma cauchy_imp_bounded: assumes "cauchy X" shows "\b>0. \n. \X n\ < b" proof - obtain k where k: "\m\k. \n\k. \X m - X n\ < 1" using cauchyD [OF assms zero_less_one] .. show "\b>0. \n. \X n\ < b" proof (intro exI conjI allI) have "0 \ \X 0\" by simp also have "\X 0\ \ Max (abs ` X ` {..k})" by simp finally have "0 \ Max (abs ` X ` {..k})" . then show "0 < Max (abs ` X ` {..k}) + 1" by simp next fix n :: nat show "\X n\ < Max (abs ` X ` {..k}) + 1" proof (rule linorder_le_cases) assume "n \ k" then have "\X n\ \ Max (abs ` X ` {..k})" by simp then show "\X n\ < Max (abs ` X ` {..k}) + 1" by simp next assume "k \ n" have "\X n\ = \X k + (X n - X k)\" by simp also have "\X k + (X n - X k)\ \ \X k\ + \X n - X k\" by (rule abs_triangle_ineq) also have "\ < Max (abs ` X ` {..k}) + 1" by (rule add_le_less_mono) (simp_all add: k \k \ n\) finally show "\X n\ < Max (abs ` X ` {..k}) + 1" . qed qed qed lemma cauchy_mult [simp]: assumes X: "cauchy X" and Y: "cauchy Y" shows "cauchy (\n. X n * Y n)" proof (rule cauchyI) fix r :: rat assume "0 < r" then obtain u v where u: "0 < u" and v: "0 < v" and "r = u + v" by (rule obtain_pos_sum) obtain a where a: "0 < a" "\n. \X n\ < a" using cauchy_imp_bounded [OF X] by blast obtain b where b: "0 < b" "\n. \Y n\ < b" using cauchy_imp_bounded [OF Y] by blast obtain s t where s: "0 < s" and t: "0 < t" and r: "r = a * t + s * b" proof show "0 < v/b" using v b(1) by simp show "0 < u/a" using u a(1) by simp show "r = a * (u/a) + (v/b) * b" using a(1) b(1) \r = u + v\ by simp qed obtain i where i: "\m\i. \n\i. \X m - X n\ < s" using cauchyD [OF X s] .. obtain j where j: "\m\j. \n\j. \Y m - Y n\ < t" using cauchyD [OF Y t] .. have "\m\max i j. \n\max i j. \X m * Y m - X n * Y n\ < r" proof clarsimp fix m n assume *: "i \ m" "j \ m" "i \ n" "j \ n" have "\X m * Y m - X n * Y n\ = \X m * (Y m - Y n) + (X m - X n) * Y n\" unfolding mult_diff_mult .. also have "\ \ \X m * (Y m - Y n)\ + \(X m - X n) * Y n\" by (rule abs_triangle_ineq) also have "\ = \X m\ * \Y m - Y n\ + \X m - X n\ * \Y n\" unfolding abs_mult .. also have "\ < a * t + s * b" by (simp_all add: add_strict_mono mult_strict_mono' a b i j *) finally show "\X m * Y m - X n * Y n\ < r" by (simp only: r) qed then show "\k. \m\k. \n\k. \X m * Y m - X n * Y n\ < r" .. qed lemma cauchy_not_vanishes_cases: assumes X: "cauchy X" assumes nz: "\ vanishes X" shows "\b>0. \k. (\n\k. b < - X n) \ (\n\k. b < X n)" proof - obtain r where "0 < r" and r: "\k. \n\k. r \ \X n\" using nz unfolding vanishes_def by (auto simp add: not_less) obtain s t where s: "0 < s" and t: "0 < t" and "r = s + t" using \0 < r\ by (rule obtain_pos_sum) obtain i where i: "\m\i. \n\i. \X m - X n\ < s" using cauchyD [OF X s] .. obtain k where "i \ k" and "r \ \X k\" using r by blast have k: "\n\k. \X n - X k\ < s" using i \i \ k\ by auto have "X k \ - r \ r \ X k" using \r \ \X k\\ by auto then have "(\n\k. t < - X n) \ (\n\k. t < X n)" unfolding \r = s + t\ using k by auto then have "\k. (\n\k. t < - X n) \ (\n\k. t < X n)" .. then show "\t>0. \k. (\n\k. t < - X n) \ (\n\k. t < X n)" using t by auto qed lemma cauchy_not_vanishes: assumes X: "cauchy X" and nz: "\ vanishes X" shows "\b>0. \k. \n\k. b < \X n\" using cauchy_not_vanishes_cases [OF assms] by (elim ex_forward conj_forward asm_rl) auto lemma cauchy_inverse [simp]: assumes X: "cauchy X" and nz: "\ vanishes X" shows "cauchy (\n. inverse (X n))" proof (rule cauchyI) fix r :: rat assume "0 < r" obtain b i where b: "0 < b" and i: "\n\i. b < \X n\" using cauchy_not_vanishes [OF X nz] by blast from b i have nz: "\n\i. X n \ 0" by auto obtain s where s: "0 < s" and r: "r = inverse b * s * inverse b" proof show "0 < b * r * b" by (simp add: \0 < r\ b) show "r = inverse b * (b * r * b) * inverse b" using b by simp qed obtain j where j: "\m\j. \n\j. \X m - X n\ < s" using cauchyD [OF X s] .. have "\m\max i j. \n\max i j. \inverse (X m) - inverse (X n)\ < r" proof clarsimp fix m n assume *: "i \ m" "j \ m" "i \ n" "j \ n" have "\inverse (X m) - inverse (X n)\ = inverse \X m\ * \X m - X n\ * inverse \X n\" by (simp add: inverse_diff_inverse nz * abs_mult) also have "\ < inverse b * s * inverse b" by (simp add: mult_strict_mono less_imp_inverse_less i j b * s) finally show "\inverse (X m) - inverse (X n)\ < r" by (simp only: r) qed then show "\k. \m\k. \n\k. \inverse (X m) - inverse (X n)\ < r" .. qed lemma vanishes_diff_inverse: assumes X: "cauchy X" "\ vanishes X" and Y: "cauchy Y" "\ vanishes Y" and XY: "vanishes (\n. X n - Y n)" shows "vanishes (\n. inverse (X n) - inverse (Y n))" proof (rule vanishesI) fix r :: rat assume r: "0 < r" obtain a i where a: "0 < a" and i: "\n\i. a < \X n\" using cauchy_not_vanishes [OF X] by blast obtain b j where b: "0 < b" and j: "\n\j. b < \Y n\" using cauchy_not_vanishes [OF Y] by blast obtain s where s: "0 < s" and "inverse a * s * inverse b = r" proof show "0 < a * r * b" using a r b by simp show "inverse a * (a * r * b) * inverse b = r" using a r b by simp qed obtain k where k: "\n\k. \X n - Y n\ < s" using vanishesD [OF XY s] .. have "\n\max (max i j) k. \inverse (X n) - inverse (Y n)\ < r" proof clarsimp fix n assume n: "i \ n" "j \ n" "k \ n" with i j a b have "X n \ 0" and "Y n \ 0" by auto then have "\inverse (X n) - inverse (Y n)\ = inverse \X n\ * \X n - Y n\ * inverse \Y n\" by (simp add: inverse_diff_inverse abs_mult) also have "\ < inverse a * s * inverse b" by (intro mult_strict_mono' less_imp_inverse_less) (simp_all add: a b i j k n) also note \inverse a * s * inverse b = r\ finally show "\inverse (X n) - inverse (Y n)\ < r" . qed then show "\k. \n\k. \inverse (X n) - inverse (Y n)\ < r" .. qed subsection \Equivalence relation on Cauchy sequences\ definition realrel :: "(nat \ rat) \ (nat \ rat) \ bool" where "realrel = (\X Y. cauchy X \ cauchy Y \ vanishes (\n. X n - Y n))" lemma realrelI [intro?]: "cauchy X \ cauchy Y \ vanishes (\n. X n - Y n) \ realrel X Y" by (simp add: realrel_def) lemma realrel_refl: "cauchy X \ realrel X X" by (simp add: realrel_def) lemma symp_realrel: "symp realrel" by (simp add: abs_minus_commute realrel_def symp_def vanishes_def) lemma transp_realrel: "transp realrel" unfolding realrel_def by (rule transpI) (force simp add: dest: vanishes_add) lemma part_equivp_realrel: "part_equivp realrel" by (blast intro: part_equivpI symp_realrel transp_realrel realrel_refl cauchy_const) subsection \The field of real numbers\ quotient_type real = "nat \ rat" / partial: realrel morphisms rep_real Real by (rule part_equivp_realrel) lemma cr_real_eq: "pcr_real = (\x y. cauchy x \ Real x = y)" unfolding real.pcr_cr_eq cr_real_def realrel_def by auto lemma Real_induct [induct type: real]: (* TODO: generate automatically *) assumes "\X. cauchy X \ P (Real X)" shows "P x" proof (induct x) case (1 X) then have "cauchy X" by (simp add: realrel_def) then show "P (Real X)" by (rule assms) qed lemma eq_Real: "cauchy X \ cauchy Y \ Real X = Real Y \ vanishes (\n. X n - Y n)" using real.rel_eq_transfer unfolding real.pcr_cr_eq cr_real_def rel_fun_def realrel_def by simp lemma Domainp_pcr_real [transfer_domain_rule]: "Domainp pcr_real = cauchy" by (simp add: real.domain_eq realrel_def) instantiation real :: field begin lift_definition zero_real :: "real" is "\n. 0" by (simp add: realrel_refl) lift_definition one_real :: "real" is "\n. 1" by (simp add: realrel_refl) lift_definition plus_real :: "real \ real \ real" is "\X Y n. X n + Y n" unfolding realrel_def add_diff_add by (simp only: cauchy_add vanishes_add simp_thms) lift_definition uminus_real :: "real \ real" is "\X n. - X n" unfolding realrel_def minus_diff_minus by (simp only: cauchy_minus vanishes_minus simp_thms) lift_definition times_real :: "real \ real \ real" is "\X Y n. X n * Y n" proof - fix f1 f2 f3 f4 have "\cauchy f1; cauchy f4; vanishes (\n. f1 n - f2 n); vanishes (\n. f3 n - f4 n)\ \ vanishes (\n. f1 n * (f3 n - f4 n) + f4 n * (f1 n - f2 n))" by (simp add: vanishes_add vanishes_mult_bounded cauchy_imp_bounded) then show "\realrel f1 f2; realrel f3 f4\ \ realrel (\n. f1 n * f3 n) (\n. f2 n * f4 n)" by (simp add: mult.commute realrel_def mult_diff_mult) qed lift_definition inverse_real :: "real \ real" is "\X. if vanishes X then (\n. 0) else (\n. inverse (X n))" proof - fix X Y assume "realrel X Y" then have X: "cauchy X" and Y: "cauchy Y" and XY: "vanishes (\n. X n - Y n)" by (simp_all add: realrel_def) have "vanishes X \ vanishes Y" proof assume "vanishes X" from vanishes_diff [OF this XY] show "vanishes Y" by simp next assume "vanishes Y" from vanishes_add [OF this XY] show "vanishes X" by simp qed then show "?thesis X Y" by (simp add: vanishes_diff_inverse X Y XY realrel_def) qed definition "x - y = x + - y" for x y :: real definition "x div y = x * inverse y" for x y :: real lemma add_Real: "cauchy X \ cauchy Y \ Real X + Real Y = Real (\n. X n + Y n)" using plus_real.transfer by (simp add: cr_real_eq rel_fun_def) lemma minus_Real: "cauchy X \ - Real X = Real (\n. - X n)" using uminus_real.transfer by (simp add: cr_real_eq rel_fun_def) lemma diff_Real: "cauchy X \ cauchy Y \ Real X - Real Y = Real (\n. X n - Y n)" by (simp add: minus_Real add_Real minus_real_def) lemma mult_Real: "cauchy X \ cauchy Y \ Real X * Real Y = Real (\n. X n * Y n)" using times_real.transfer by (simp add: cr_real_eq rel_fun_def) lemma inverse_Real: "cauchy X \ inverse (Real X) = (if vanishes X then 0 else Real (\n. inverse (X n)))" using inverse_real.transfer zero_real.transfer unfolding cr_real_eq rel_fun_def by (simp split: if_split_asm, metis) instance proof fix a b c :: real show "a + b = b + a" by transfer (simp add: ac_simps realrel_def) show "(a + b) + c = a + (b + c)" by transfer (simp add: ac_simps realrel_def) show "0 + a = a" by transfer (simp add: realrel_def) show "- a + a = 0" by transfer (simp add: realrel_def) show "a - b = a + - b" by (rule minus_real_def) show "(a * b) * c = a * (b * c)" by transfer (simp add: ac_simps realrel_def) show "a * b = b * a" by transfer (simp add: ac_simps realrel_def) show "1 * a = a" by transfer (simp add: ac_simps realrel_def) show "(a + b) * c = a * c + b * c" by transfer (simp add: distrib_right realrel_def) show "(0::real) \ (1::real)" by transfer (simp add: realrel_def) have "vanishes (\n. inverse (X n) * X n - 1)" if X: "cauchy X" "\ vanishes X" for X proof (rule vanishesI) fix r::rat assume "0 < r" obtain b k where "b>0" "\n\k. b < \X n\" using X cauchy_not_vanishes by blast then show "\k. \n\k. \inverse (X n) * X n - 1\ < r" using \0 < r\ by force qed then show "a \ 0 \ inverse a * a = 1" by transfer (simp add: realrel_def) show "a div b = a * inverse b" by (rule divide_real_def) show "inverse (0::real) = 0" by transfer (simp add: realrel_def) qed end subsection \Positive reals\ lift_definition positive :: "real \ bool" is "\X. \r>0. \k. \n\k. r < X n" proof - have 1: "\r>0. \k. \n\k. r < Y n" if *: "realrel X Y" and **: "\r>0. \k. \n\k. r < X n" for X Y proof - from * have XY: "vanishes (\n. X n - Y n)" by (simp_all add: realrel_def) from ** obtain r i where "0 < r" and i: "\n\i. r < X n" by blast obtain s t where s: "0 < s" and t: "0 < t" and r: "r = s + t" using \0 < r\ by (rule obtain_pos_sum) obtain j where j: "\n\j. \X n - Y n\ < s" using vanishesD [OF XY s] .. have "\n\max i j. t < Y n" proof clarsimp fix n assume n: "i \ n" "j \ n" have "\X n - Y n\ < s" and "r < X n" using i j n by simp_all then show "t < Y n" by (simp add: r) qed then show ?thesis using t by blast qed fix X Y assume "realrel X Y" then have "realrel X Y" and "realrel Y X" using symp_realrel by (auto simp: symp_def) then show "?thesis X Y" by (safe elim!: 1) qed lemma positive_Real: "cauchy X \ positive (Real X) \ (\r>0. \k. \n\k. r < X n)" using positive.transfer by (simp add: cr_real_eq rel_fun_def) lemma positive_zero: "\ positive 0" by transfer auto lemma positive_add: assumes "positive x" "positive y" shows "positive (x + y)" proof - have *: "\\n\i. a < x n; \n\j. b < y n; 0 < a; 0 < b; n \ max i j\ \ a+b < x n + y n" for x y and a b::rat and i j n::nat by (simp add: add_strict_mono) show ?thesis using assms by transfer (blast intro: * pos_add_strict) qed lemma positive_mult: assumes "positive x" "positive y" shows "positive (x * y)" proof - have *: "\\n\i. a < x n; \n\j. b < y n; 0 < a; 0 < b; n \ max i j\ \ a*b < x n * y n" for x y and a b::rat and i j n::nat by (simp add: mult_strict_mono') show ?thesis using assms by transfer (blast intro: * mult_pos_pos) qed lemma positive_minus: "\ positive x \ x \ 0 \ positive (- x)" apply transfer apply (simp add: realrel_def) apply (blast dest: cauchy_not_vanishes_cases) done instantiation real :: linordered_field begin definition "x < y \ positive (y - x)" definition "x \ y \ x < y \ x = y" for x y :: real definition "\a\ = (if a < 0 then - a else a)" for a :: real definition "sgn a = (if a = 0 then 0 else if 0 < a then 1 else - 1)" for a :: real instance proof fix a b c :: real show "\a\ = (if a < 0 then - a else a)" by (rule abs_real_def) show "a < b \ a \ b \ \ b \ a" "a \ b \ b \ c \ a \ c" "a \ a" "a \ b \ b \ a \ a = b" "a \ b \ c + a \ c + b" unfolding less_eq_real_def less_real_def by (force simp add: positive_zero dest: positive_add)+ show "sgn a = (if a = 0 then 0 else if 0 < a then 1 else - 1)" by (rule sgn_real_def) show "a \ b \ b \ a" by (auto dest!: positive_minus simp: less_eq_real_def less_real_def) show "a < b \ 0 < c \ c * a < c * b" unfolding less_real_def by (force simp add: algebra_simps dest: positive_mult) qed end instantiation real :: distrib_lattice begin definition "(inf :: real \ real \ real) = min" definition "(sup :: real \ real \ real) = max" instance by standard (auto simp add: inf_real_def sup_real_def max_min_distrib2) end lemma of_nat_Real: "of_nat x = Real (\n. of_nat x)" by (induct x) (simp_all add: zero_real_def one_real_def add_Real) lemma of_int_Real: "of_int x = Real (\n. of_int x)" by (cases x rule: int_diff_cases) (simp add: of_nat_Real diff_Real) lemma of_rat_Real: "of_rat x = Real (\n. x)" proof (induct x) case (Fract a b) then show ?case apply (simp add: Fract_of_int_quotient of_rat_divide) apply (simp add: of_int_Real divide_inverse inverse_Real mult_Real) done qed instance real :: archimedean_field proof show "\z. x \ of_int z" for x :: real proof (induct x) case (1 X) then obtain b where "0 < b" and b: "\n. \X n\ < b" by (blast dest: cauchy_imp_bounded) then have "Real X < of_int (\b\ + 1)" using 1 apply (simp add: of_int_Real less_real_def diff_Real positive_Real) apply (rule_tac x=1 in exI) apply (simp add: algebra_simps) by (metis abs_ge_self le_less_trans le_of_int_ceiling less_le) then show ?case using less_eq_real_def by blast qed qed instantiation real :: floor_ceiling begin definition [code del]: "\x::real\ = (THE z. of_int z \ x \ x < of_int (z + 1))" instance proof show "of_int \x\ \ x \ x < of_int (\x\ + 1)" for x :: real unfolding floor_real_def using floor_exists1 by (rule theI') qed end subsection \Completeness\ lemma not_positive_Real: assumes "cauchy X" shows "\ positive (Real X) \ (\r>0. \k. \n\k. X n \ r)" (is "?lhs = ?rhs") unfolding positive_Real [OF assms] proof (intro iffI allI notI impI) show "\k. \n\k. X n \ r" if r: "\ (\r>0. \k. \n\k. r < X n)" and "0 < r" for r proof - obtain s t where "s > 0" "t > 0" "r = s+t" using \r > 0\ obtain_pos_sum by blast obtain k where k: "\m n. \m\k; n\k\ \ \X m - X n\ < t" using cauchyD [OF assms \t > 0\] by blast obtain n where "n \ k" "X n \ s" by (meson r \0 < s\ not_less) then have "X l \ r" if "l \ n" for l using k [OF \n \ k\, of l] that \r = s+t\ by linarith then show ?thesis by blast qed qed (meson le_cases not_le) lemma le_Real: assumes "cauchy X" "cauchy Y" shows "Real X \ Real Y = (\r>0. \k. \n\k. X n \ Y n + r)" unfolding not_less [symmetric, where 'a=real] less_real_def apply (simp add: diff_Real not_positive_Real assms) apply (simp add: diff_le_eq ac_simps) done lemma le_RealI: assumes Y: "cauchy Y" shows "\n. x \ of_rat (Y n) \ x \ Real Y" proof (induct x) fix X assume X: "cauchy X" and "\n. Real X \ of_rat (Y n)" then have le: "\m r. 0 < r \ \k. \n\k. X n \ Y m + r" by (simp add: of_rat_Real le_Real) then have "\k. \n\k. X n \ Y n + r" if "0 < r" for r :: rat proof - from that obtain s t where s: "0 < s" and t: "0 < t" and r: "r = s + t" by (rule obtain_pos_sum) obtain i where i: "\m\i. \n\i. \Y m - Y n\ < s" using cauchyD [OF Y s] .. obtain j where j: "\n\j. X n \ Y i + t" using le [OF t] .. have "\n\max i j. X n \ Y n + r" proof clarsimp fix n assume n: "i \ n" "j \ n" have "X n \ Y i + t" using n j by simp moreover have "\Y i - Y n\ < s" using n i by simp ultimately show "X n \ Y n + r" unfolding r by simp qed then show ?thesis .. qed then show "Real X \ Real Y" by (simp add: of_rat_Real le_Real X Y) qed lemma Real_leI: assumes X: "cauchy X" assumes le: "\n. of_rat (X n) \ y" shows "Real X \ y" proof - have "- y \ - Real X" by (simp add: minus_Real X le_RealI of_rat_minus le) then show ?thesis by simp qed lemma less_RealD: assumes "cauchy Y" shows "x < Real Y \ \n. x < of_rat (Y n)" apply (erule contrapos_pp) apply (simp add: not_less) apply (erule Real_leI [OF assms]) done lemma of_nat_less_two_power [simp]: "of_nat n < (2::'a::linordered_idom) ^ n" apply (induct n) apply simp apply (metis add_le_less_mono mult_2 of_nat_Suc one_le_numeral one_le_power power_Suc) done lemma complete_real: fixes S :: "real set" assumes "\x. x \ S" and "\z. \x\S. x \ z" shows "\y. (\x\S. x \ y) \ (\z. (\x\S. x \ z) \ y \ z)" proof - obtain x where x: "x \ S" using assms(1) .. obtain z where z: "\x\S. x \ z" using assms(2) .. define P where "P x \ (\y\S. y \ of_rat x)" for x obtain a where a: "\ P a" proof have "of_int \x - 1\ \ x - 1" by (rule of_int_floor_le) also have "x - 1 < x" by simp finally have "of_int \x - 1\ < x" . then have "\ x \ of_int \x - 1\" by (simp only: not_le) then show "\ P (of_int \x - 1\)" unfolding P_def of_rat_of_int_eq using x by blast qed obtain b where b: "P b" proof show "P (of_int \z\)" unfolding P_def of_rat_of_int_eq proof fix y assume "y \ S" then have "y \ z" using z by simp also have "z \ of_int \z\" by (rule le_of_int_ceiling) finally show "y \ of_int \z\" . qed qed define avg where "avg x y = x/2 + y/2" for x y :: rat define bisect where "bisect = (\(x, y). if P (avg x y) then (x, avg x y) else (avg x y, y))" define A where "A n = fst ((bisect ^^ n) (a, b))" for n define B where "B n = snd ((bisect ^^ n) (a, b))" for n define C where "C n = avg (A n) (B n)" for n have A_0 [simp]: "A 0 = a" unfolding A_def by simp have B_0 [simp]: "B 0 = b" unfolding B_def by simp have A_Suc [simp]: "\n. A (Suc n) = (if P (C n) then A n else C n)" unfolding A_def B_def C_def bisect_def split_def by simp have B_Suc [simp]: "\n. B (Suc n) = (if P (C n) then C n else B n)" unfolding A_def B_def C_def bisect_def split_def by simp have width: "B n - A n = (b - a) / 2^n" for n proof (induct n) case (Suc n) then show ?case by (simp add: C_def eq_divide_eq avg_def algebra_simps) qed simp have twos: "\n. y / 2 ^ n < r" if "0 < r" for y r :: rat proof - obtain n where "y / r < rat_of_nat n" using \0 < r\ reals_Archimedean2 by blast then have "\n. y < r * 2 ^ n" by (metis divide_less_eq less_trans mult.commute of_nat_less_two_power that) then show ?thesis by (simp add: field_split_simps) qed have PA: "\ P (A n)" for n by (induct n) (simp_all add: a) have PB: "P (B n)" for n by (induct n) (simp_all add: b) have ab: "a < b" using a b unfolding P_def by (meson leI less_le_trans of_rat_less) have AB: "A n < B n" for n by (induct n) (simp_all add: ab C_def avg_def) have "A i \ A j \ B j \ B i" if "i < j" for i j using that proof (induction rule: less_Suc_induct) case (1 i) then show ?case apply (clarsimp simp add: C_def avg_def add_divide_distrib [symmetric]) apply (rule AB [THEN less_imp_le]) done qed simp then have A_mono: "A i \ A j" and B_mono: "B j \ B i" if "i \ j" for i j by (metis eq_refl le_neq_implies_less that)+ have cauchy_lemma: "cauchy X" if *: "\n i. i\n \ A n \ X i \ X i \ B n" for X proof (rule cauchyI) fix r::rat assume "0 < r" then obtain k where k: "(b - a) / 2 ^ k < r" using twos by blast have "\X m - X n\ < r" if "m\k" "n\k" for m n proof - have "\X m - X n\ \ B k - A k" by (simp add: * abs_rat_def diff_mono that) also have "... < r" by (simp add: k width) finally show ?thesis . qed then show "\k. \m\k. \n\k. \X m - X n\ < r" by blast qed have "cauchy A" by (rule cauchy_lemma) (meson AB A_mono B_mono dual_order.strict_implies_order less_le_trans) have "cauchy B" by (rule cauchy_lemma) (meson AB A_mono B_mono dual_order.strict_implies_order le_less_trans) have "\x\S. x \ Real B" proof fix x assume "x \ S" then show "x \ Real B" using PB [unfolded P_def] \cauchy B\ by (simp add: le_RealI) qed moreover have "\z. (\x\S. x \ z) \ Real A \ z" by (meson PA Real_leI P_def \cauchy A\ le_cases order.trans) moreover have "vanishes (\n. (b - a) / 2 ^ n)" proof (rule vanishesI) fix r :: rat assume "0 < r" then obtain k where k: "\b - a\ / 2 ^ k < r" using twos by blast have "\n\k. \(b - a) / 2 ^ n\ < r" proof clarify fix n assume n: "k \ n" have "\(b - a) / 2 ^ n\ = \b - a\ / 2 ^ n" by simp also have "\ \ \b - a\ / 2 ^ k" using n by (simp add: divide_left_mono) also note k finally show "\(b - a) / 2 ^ n\ < r" . qed then show "\k. \n\k. \(b - a) / 2 ^ n\ < r" .. qed then have "Real B = Real A" by (simp add: eq_Real \cauchy A\ \cauchy B\ width) ultimately show "\y. (\x\S. x \ y) \ (\z. (\x\S. x \ z) \ y \ z)" by force qed instantiation real :: linear_continuum begin subsection \Supremum of a set of reals\ definition "Sup X = (LEAST z::real. \x\X. x \ z)" definition "Inf X = - Sup (uminus ` X)" for X :: "real set" instance proof show Sup_upper: "x \ Sup X" if "x \ X" "bdd_above X" for x :: real and X :: "real set" proof - from that obtain s where s: "\y\X. y \ s" "\z. \y\X. y \ z \ s \ z" using complete_real[of X] unfolding bdd_above_def by blast then show ?thesis unfolding Sup_real_def by (rule LeastI2_order) (auto simp: that) qed show Sup_least: "Sup X \ z" if "X \ {}" and z: "\x. x \ X \ x \ z" for z :: real and X :: "real set" proof - from that obtain s where s: "\y\X. y \ s" "\z. \y\X. y \ z \ s \ z" using complete_real [of X] by blast then have "Sup X = s" unfolding Sup_real_def by (best intro: Least_equality) also from s z have "\ \ z" by blast finally show ?thesis . qed show "Inf X \ x" if "x \ X" "bdd_below X" for x :: real and X :: "real set" using Sup_upper [of "-x" "uminus ` X"] by (auto simp: Inf_real_def that) show "z \ Inf X" if "X \ {}" "\x. x \ X \ z \ x" for z :: real and X :: "real set" using Sup_least [of "uminus ` X" "- z"] by (force simp: Inf_real_def that) show "\a b::real. a \ b" using zero_neq_one by blast qed end subsection \Hiding implementation details\ hide_const (open) vanishes cauchy positive Real declare Real_induct [induct del] declare Abs_real_induct [induct del] declare Abs_real_cases [cases del] lifting_update real.lifting lifting_forget real.lifting subsection \More Lemmas\ text \BH: These lemmas should not be necessary; they should be covered by existing simp rules and simplification procedures.\ lemma real_mult_less_iff1 [simp]: "0 < z \ x * z < y * z \ x < y" for x y z :: real by simp (* solved by linordered_ring_less_cancel_factor simproc *) lemma real_mult_le_cancel_iff1 [simp]: "0 < z \ x * z \ y * z \ x \ y" for x y z :: real by simp (* solved by linordered_ring_le_cancel_factor simproc *) lemma real_mult_le_cancel_iff2 [simp]: "0 < z \ z * x \ z * y \ x \ y" for x y z :: real by simp (* solved by linordered_ring_le_cancel_factor simproc *) subsection \Embedding numbers into the Reals\ abbreviation real_of_nat :: "nat \ real" where "real_of_nat \ of_nat" abbreviation real :: "nat \ real" where "real \ of_nat" abbreviation real_of_int :: "int \ real" where "real_of_int \ of_int" abbreviation real_of_rat :: "rat \ real" where "real_of_rat \ of_rat" declare [[coercion_enabled]] declare [[coercion "of_nat :: nat \ int"]] declare [[coercion "of_nat :: nat \ real"]] declare [[coercion "of_int :: int \ real"]] (* We do not add rat to the coerced types, this has often unpleasant side effects when writing inverse (Suc n) which sometimes gets two coercions: of_rat (inverse (of_nat (Suc n))) *) declare [[coercion_map map]] declare [[coercion_map "\f g h x. g (h (f x))"]] declare [[coercion_map "\f g (x,y). (f x, g y)"]] declare of_int_eq_0_iff [algebra, presburger] declare of_int_eq_1_iff [algebra, presburger] declare of_int_eq_iff [algebra, presburger] declare of_int_less_0_iff [algebra, presburger] declare of_int_less_1_iff [algebra, presburger] declare of_int_less_iff [algebra, presburger] declare of_int_le_0_iff [algebra, presburger] declare of_int_le_1_iff [algebra, presburger] declare of_int_le_iff [algebra, presburger] declare of_int_0_less_iff [algebra, presburger] declare of_int_0_le_iff [algebra, presburger] declare of_int_1_less_iff [algebra, presburger] declare of_int_1_le_iff [algebra, presburger] lemma int_less_real_le: "n < m \ real_of_int n + 1 \ real_of_int m" proof - have "(0::real) \ 1" by (metis less_eq_real_def zero_less_one) then show ?thesis by (metis floor_of_int less_floor_iff) qed lemma int_le_real_less: "n \ m \ real_of_int n < real_of_int m + 1" by (meson int_less_real_le not_le) lemma real_of_int_div_aux: "(real_of_int x) / (real_of_int d) = real_of_int (x div d) + (real_of_int (x mod d)) / (real_of_int d)" proof - have "x = (x div d) * d + x mod d" by auto then have "real_of_int x = real_of_int (x div d) * real_of_int d + real_of_int(x mod d)" by (metis of_int_add of_int_mult) then have "real_of_int x / real_of_int d = \ / real_of_int d" by simp then show ?thesis by (auto simp add: add_divide_distrib algebra_simps) qed lemma real_of_int_div: "d dvd n \ real_of_int (n div d) = real_of_int n / real_of_int d" for d n :: int by (simp add: real_of_int_div_aux) lemma real_of_int_div2: "0 \ real_of_int n / real_of_int x - real_of_int (n div x)" proof (cases "x = 0") case False then show ?thesis by (metis diff_ge_0_iff_ge floor_divide_of_int_eq of_int_floor_le) qed simp lemma real_of_int_div3: "real_of_int n / real_of_int x - real_of_int (n div x) \ 1" apply (simp add: algebra_simps) by (metis add.commute floor_correct floor_divide_of_int_eq less_eq_real_def of_int_1 of_int_add) lemma real_of_int_div4: "real_of_int (n div x) \ real_of_int n / real_of_int x" using real_of_int_div2 [of n x] by simp subsection \Embedding the Naturals into the Reals\ lemma real_of_card: "real (card A) = sum (\x. 1) A" by simp lemma nat_less_real_le: "n < m \ real n + 1 \ real m" by (metis discrete of_nat_1 of_nat_add of_nat_le_iff) lemma nat_le_real_less: "n \ m \ real n < real m + 1" for m n :: nat by (meson nat_less_real_le not_le) lemma real_of_nat_div_aux: "real x / real d = real (x div d) + real (x mod d) / real d" proof - have "x = (x div d) * d + x mod d" by auto then have "real x = real (x div d) * real d + real(x mod d)" by (metis of_nat_add of_nat_mult) then have "real x / real d = \ / real d" by simp then show ?thesis by (auto simp add: add_divide_distrib algebra_simps) qed lemma real_of_nat_div: "d dvd n \ real(n div d) = real n / real d" by (subst real_of_nat_div_aux) (auto simp add: dvd_eq_mod_eq_0 [symmetric]) lemma real_of_nat_div2: "0 \ real n / real x - real (n div x)" for n x :: nat apply (simp add: algebra_simps) by (metis floor_divide_of_nat_eq of_int_floor_le of_int_of_nat_eq) lemma real_of_nat_div3: "real n / real x - real (n div x) \ 1" for n x :: nat proof (cases "x = 0") case False then show ?thesis by (metis of_int_of_nat_eq real_of_int_div3 zdiv_int) qed auto lemma real_of_nat_div4: "real (n div x) \ real n / real x" for n x :: nat using real_of_nat_div2 [of n x] by simp subsection \The Archimedean Property of the Reals\ lemma real_arch_inverse: "0 < e \ (\n::nat. n \ 0 \ 0 < inverse (real n) \ inverse (real n) < e)" using reals_Archimedean[of e] less_trans[of 0 "1 / real n" e for n::nat] by (auto simp add: field_simps cong: conj_cong simp del: of_nat_Suc) lemma reals_Archimedean3: "0 < x \ \y. \n. y < real n * x" by (auto intro: ex_less_of_nat_mult) lemma real_archimedian_rdiv_eq_0: assumes x0: "x \ 0" and c: "c \ 0" and xc: "\m::nat. m > 0 \ real m * x \ c" shows "x = 0" by (metis reals_Archimedean3 dual_order.order_iff_strict le0 le_less_trans not_le x0 xc) subsection \Rationals\ lemma Rats_abs_iff[simp]: "\(x::real)\ \ \ \ x \ \" by(simp add: abs_real_def split: if_splits) lemma Rats_eq_int_div_int: "\ = {real_of_int i / real_of_int j | i j. j \ 0}" (is "_ = ?S") proof show "\ \ ?S" proof fix x :: real assume "x \ \" then obtain r where "x = of_rat r" unfolding Rats_def .. have "of_rat r \ ?S" by (cases r) (auto simp add: of_rat_rat) then show "x \ ?S" using \x = of_rat r\ by simp qed next show "?S \ \" proof (auto simp: Rats_def) fix i j :: int assume "j \ 0" then have "real_of_int i / real_of_int j = of_rat (Fract i j)" by (simp add: of_rat_rat) then show "real_of_int i / real_of_int j \ range of_rat" by blast qed qed lemma Rats_eq_int_div_nat: "\ = { real_of_int i / real n | i n. n \ 0}" proof (auto simp: Rats_eq_int_div_int) fix i j :: int assume "j \ 0" show "\(i'::int) (n::nat). real_of_int i / real_of_int j = real_of_int i' / real n \ 0 < n" proof (cases "j > 0") case True then have "real_of_int i / real_of_int j = real_of_int i / real (nat j) \ 0 < nat j" by simp then show ?thesis by blast next case False with \j \ 0\ have "real_of_int i / real_of_int j = real_of_int (- i) / real (nat (- j)) \ 0 < nat (- j)" by simp then show ?thesis by blast qed next fix i :: int and n :: nat assume "0 < n" then have "real_of_int i / real n = real_of_int i / real_of_int(int n) \ int n \ 0" by simp then show "\i' j. real_of_int i / real n = real_of_int i' / real_of_int j \ j \ 0" by blast qed lemma Rats_abs_nat_div_natE: assumes "x \ \" obtains m n :: nat where "n \ 0" and "\x\ = real m / real n" and "coprime m n" proof - from \x \ \\ obtain i :: int and n :: nat where "n \ 0" and "x = real_of_int i / real n" by (auto simp add: Rats_eq_int_div_nat) then have "\x\ = real (nat \i\) / real n" by simp then obtain m :: nat where x_rat: "\x\ = real m / real n" by blast let ?gcd = "gcd m n" from \n \ 0\ have gcd: "?gcd \ 0" by simp let ?k = "m div ?gcd" let ?l = "n div ?gcd" let ?gcd' = "gcd ?k ?l" have "?gcd dvd m" .. then have gcd_k: "?gcd * ?k = m" by (rule dvd_mult_div_cancel) have "?gcd dvd n" .. then have gcd_l: "?gcd * ?l = n" by (rule dvd_mult_div_cancel) from \n \ 0\ and gcd_l have "?gcd * ?l \ 0" by simp then have "?l \ 0" by (blast dest!: mult_not_zero) moreover have "\x\ = real ?k / real ?l" proof - from gcd have "real ?k / real ?l = real (?gcd * ?k) / real (?gcd * ?l)" by (simp add: real_of_nat_div) also from gcd_k and gcd_l have "\ = real m / real n" by simp also from x_rat have "\ = \x\" .. finally show ?thesis .. qed moreover have "?gcd' = 1" proof - have "?gcd * ?gcd' = gcd (?gcd * ?k) (?gcd * ?l)" by (rule gcd_mult_distrib_nat) with gcd_k gcd_l have "?gcd * ?gcd' = ?gcd" by simp with gcd show ?thesis by auto qed then have "coprime ?k ?l" by (simp only: coprime_iff_gcd_eq_1) ultimately show ?thesis .. qed subsection \Density of the Rational Reals in the Reals\ text \ This density proof is due to Stefan Richter and was ported by TN. The original source is \<^emph>\Real Analysis\ by H.L. Royden. It employs the Archimedean property of the reals.\ lemma Rats_dense_in_real: fixes x :: real assumes "x < y" shows "\r\\. x < r \ r < y" proof - from \x < y\ have "0 < y - x" by simp with reals_Archimedean obtain q :: nat where q: "inverse (real q) < y - x" and "0 < q" by blast define p where "p = \y * real q\ - 1" define r where "r = of_int p / real q" from q have "x < y - inverse (real q)" by simp also from \0 < q\ have "y - inverse (real q) \ r" by (simp add: r_def p_def le_divide_eq left_diff_distrib) finally have "x < r" . moreover from \0 < q\ have "r < y" by (simp add: r_def p_def divide_less_eq diff_less_eq less_ceiling_iff [symmetric]) moreover have "r \ \" by (simp add: r_def) ultimately show ?thesis by blast qed lemma of_rat_dense: fixes x y :: real assumes "x < y" shows "\q :: rat. x < of_rat q \ of_rat q < y" using Rats_dense_in_real [OF \x < y\] by (auto elim: Rats_cases) subsection \Numerals and Arithmetic\ declaration \ K (Lin_Arith.add_inj_const (\<^const_name>\of_nat\, \<^typ>\nat \ real\) #> Lin_Arith.add_inj_const (\<^const_name>\of_int\, \<^typ>\int \ real\)) \ subsection \Simprules combining \x + y\ and \0\\ (* FIXME ARE THEY NEEDED? *) lemma real_add_minus_iff [simp]: "x + - a = 0 \ x = a" for x a :: real by arith lemma real_add_less_0_iff: "x + y < 0 \ y < - x" for x y :: real by auto lemma real_0_less_add_iff: "0 < x + y \ - x < y" for x y :: real by auto lemma real_add_le_0_iff: "x + y \ 0 \ y \ - x" for x y :: real by auto lemma real_0_le_add_iff: "0 \ x + y \ - x \ y" for x y :: real by auto subsection \Lemmas about powers\ lemma two_realpow_ge_one: "(1::real) \ 2 ^ n" by simp (* FIXME: declare this [simp] for all types, or not at all *) declare sum_squares_eq_zero_iff [simp] sum_power2_eq_zero_iff [simp] lemma real_minus_mult_self_le [simp]: "- (u * u) \ x * x" for u x :: real by (rule order_trans [where y = 0]) auto lemma realpow_square_minus_le [simp]: "- u\<^sup>2 \ x\<^sup>2" for u x :: real by (auto simp add: power2_eq_square) subsection \Density of the Reals\ lemma field_lbound_gt_zero: "0 < d1 \ 0 < d2 \ \e. 0 < e \ e < d1 \ e < d2" for d1 d2 :: "'a::linordered_field" by (rule exI [where x = "min d1 d2 / 2"]) (simp add: min_def) lemma field_less_half_sum: "x < y \ x < (x + y) / 2" for x y :: "'a::linordered_field" by auto lemma field_sum_of_halves: "x / 2 + x / 2 = x" for x :: "'a::linordered_field" by simp subsection \Archimedean properties and useful consequences\ text\Bernoulli's inequality\ proposition Bernoulli_inequality: fixes x :: real assumes "-1 \ x" shows "1 + n * x \ (1 + x) ^ n" proof (induct n) case 0 then show ?case by simp next case (Suc n) have "1 + Suc n * x \ 1 + (Suc n)*x + n * x^2" by (simp add: algebra_simps) also have "... = (1 + x) * (1 + n*x)" by (auto simp: power2_eq_square algebra_simps) also have "... \ (1 + x) ^ Suc n" using Suc.hyps assms mult_left_mono by fastforce finally show ?case . qed corollary Bernoulli_inequality_even: fixes x :: real assumes "even n" shows "1 + n * x \ (1 + x) ^ n" proof (cases "-1 \ x \ n=0") case True then show ?thesis by (auto simp: Bernoulli_inequality) next case False then have "real n \ 1" by simp with False have "n * x \ -1" by (metis linear minus_zero mult.commute mult.left_neutral mult_left_mono_neg neg_le_iff_le order_trans zero_le_one) then have "1 + n * x \ 0" by auto also have "... \ (1 + x) ^ n" using assms using zero_le_even_power by blast finally show ?thesis . qed corollary real_arch_pow: fixes x :: real assumes x: "1 < x" shows "\n. y < x^n" proof - from x have x0: "x - 1 > 0" by arith from reals_Archimedean3[OF x0, rule_format, of y] obtain n :: nat where n: "y < real n * (x - 1)" by metis from x0 have x00: "x- 1 \ -1" by arith from Bernoulli_inequality[OF x00, of n] n have "y < x^n" by auto then show ?thesis by metis qed corollary real_arch_pow_inv: fixes x y :: real assumes y: "y > 0" and x1: "x < 1" shows "\n. x^n < y" proof (cases "x > 0") case True with x1 have ix: "1 < 1/x" by (simp add: field_simps) from real_arch_pow[OF ix, of "1/y"] obtain n where n: "1/y < (1/x)^n" by blast then show ?thesis using y \x > 0\ by (auto simp add: field_simps) next case False with y x1 show ?thesis by (metis less_le_trans not_less power_one_right) qed lemma forall_pos_mono: "(\d e::real. d < e \ P d \ P e) \ (\n::nat. n \ 0 \ P (inverse (real n))) \ (\e. 0 < e \ P e)" by (metis real_arch_inverse) lemma forall_pos_mono_1: "(\d e::real. d < e \ P d \ P e) \ (\n. P (inverse (real (Suc n)))) \ 0 < e \ P e" apply (rule forall_pos_mono) apply auto apply (metis Suc_pred of_nat_Suc) done subsection \Floor and Ceiling Functions from the Reals to the Integers\ (* FIXME: theorems for negative numerals. Many duplicates, e.g. from Archimedean_Field.thy. *) lemma real_of_nat_less_numeral_iff [simp]: "real n < numeral w \ n < numeral w" for n :: nat by (metis of_nat_less_iff of_nat_numeral) lemma numeral_less_real_of_nat_iff [simp]: "numeral w < real n \ numeral w < n" for n :: nat by (metis of_nat_less_iff of_nat_numeral) lemma numeral_le_real_of_nat_iff [simp]: "numeral n \ real m \ numeral n \ m" for m :: nat by (metis not_le real_of_nat_less_numeral_iff) lemma of_int_floor_cancel [simp]: "of_int \x\ = x \ (\n::int. x = of_int n)" by (metis floor_of_int) lemma floor_eq: "real_of_int n < x \ x < real_of_int n + 1 \ \x\ = n" by linarith lemma floor_eq2: "real_of_int n \ x \ x < real_of_int n + 1 \ \x\ = n" by (fact floor_unique) lemma floor_eq3: "real n < x \ x < real (Suc n) \ nat \x\ = n" by linarith lemma floor_eq4: "real n \ x \ x < real (Suc n) \ nat \x\ = n" by linarith lemma real_of_int_floor_ge_diff_one [simp]: "r - 1 \ real_of_int \r\" by linarith lemma real_of_int_floor_gt_diff_one [simp]: "r - 1 < real_of_int \r\" by linarith lemma real_of_int_floor_add_one_ge [simp]: "r \ real_of_int \r\ + 1" by linarith lemma real_of_int_floor_add_one_gt [simp]: "r < real_of_int \r\ + 1" by linarith lemma floor_divide_real_eq_div: assumes "0 \ b" shows "\a / real_of_int b\ = \a\ div b" proof (cases "b = 0") case True then show ?thesis by simp next case False with assms have b: "b > 0" by simp have "j = i div b" if "real_of_int i \ a" "a < 1 + real_of_int i" "real_of_int j * real_of_int b \ a" "a < real_of_int b + real_of_int j * real_of_int b" for i j :: int proof - from that have "i < b + j * b" by (metis le_less_trans of_int_add of_int_less_iff of_int_mult) moreover have "j * b < 1 + i" proof - have "real_of_int (j * b) < real_of_int i + 1" using \a < 1 + real_of_int i\ \real_of_int j * real_of_int b \ a\ by force then show "j * b < 1 + i" by linarith qed ultimately have "(j - i div b) * b \ i mod b" "i mod b < ((j - i div b) + 1) * b" by (auto simp: field_simps) then have "(j - i div b) * b < 1 * b" "0 * b < ((j - i div b) + 1) * b" using pos_mod_bound [OF b, of i] pos_mod_sign [OF b, of i] by linarith+ then show ?thesis using b unfolding mult_less_cancel_right by auto qed with b show ?thesis by (auto split: floor_split simp: field_simps) qed lemma floor_one_divide_eq_div_numeral [simp]: "\1 / numeral b::real\ = 1 div numeral b" by (metis floor_divide_of_int_eq of_int_1 of_int_numeral) lemma floor_minus_one_divide_eq_div_numeral [simp]: "\- (1 / numeral b)::real\ = - 1 div numeral b" by (metis (mono_tags, hide_lams) div_minus_right minus_divide_right floor_divide_of_int_eq of_int_neg_numeral of_int_1) lemma floor_divide_eq_div_numeral [simp]: "\numeral a / numeral b::real\ = numeral a div numeral b" by (metis floor_divide_of_int_eq of_int_numeral) lemma floor_minus_divide_eq_div_numeral [simp]: "\- (numeral a / numeral b)::real\ = - numeral a div numeral b" by (metis divide_minus_left floor_divide_of_int_eq of_int_neg_numeral of_int_numeral) lemma of_int_ceiling_cancel [simp]: "of_int \x\ = x \ (\n::int. x = of_int n)" using ceiling_of_int by metis lemma ceiling_eq: "of_int n < x \ x \ of_int n + 1 \ \x\ = n + 1" by (simp add: ceiling_unique) lemma of_int_ceiling_diff_one_le [simp]: "of_int \r\ - 1 \ r" by linarith lemma of_int_ceiling_le_add_one [simp]: "of_int \r\ \ r + 1" by linarith lemma ceiling_le: "x \ of_int a \ \x\ \ a" by (simp add: ceiling_le_iff) lemma ceiling_divide_eq_div: "\of_int a / of_int b\ = - (- a div b)" by (metis ceiling_def floor_divide_of_int_eq minus_divide_left of_int_minus) lemma ceiling_divide_eq_div_numeral [simp]: "\numeral a / numeral b :: real\ = - (- numeral a div numeral b)" using ceiling_divide_eq_div[of "numeral a" "numeral b"] by simp lemma ceiling_minus_divide_eq_div_numeral [simp]: "\- (numeral a / numeral b :: real)\ = - (numeral a div numeral b)" using ceiling_divide_eq_div[of "- numeral a" "numeral b"] by simp text \ The following lemmas are remnants of the erstwhile functions natfloor and natceiling. \ lemma nat_floor_neg: "x \ 0 \ nat \x\ = 0" for x :: real by linarith lemma le_nat_floor: "real x \ a \ x \ nat \a\" by linarith lemma le_mult_nat_floor: "nat \a\ * nat \b\ \ nat \a * b\" by (cases "0 \ a \ 0 \ b") (auto simp add: nat_mult_distrib[symmetric] nat_mono le_mult_floor) lemma nat_ceiling_le_eq [simp]: "nat \x\ \ a \ x \ real a" by linarith lemma real_nat_ceiling_ge: "x \ real (nat \x\)" by linarith lemma Rats_no_top_le: "\q \ \. x \ q" for x :: real by (auto intro!: bexI[of _ "of_nat (nat \x\)"]) linarith lemma Rats_no_bot_less: "\q \ \. q < x" for x :: real by (auto intro!: bexI[of _ "of_int (\x\ - 1)"]) linarith subsection \Exponentiation with floor\ lemma floor_power: assumes "x = of_int \x\" shows "\x ^ n\ = \x\ ^ n" proof - have "x ^ n = of_int (\x\ ^ n)" using assms by (induct n arbitrary: x) simp_all then show ?thesis by (metis floor_of_int) qed lemma floor_numeral_power [simp]: "\numeral x ^ n\ = numeral x ^ n" by (metis floor_of_int of_int_numeral of_int_power) lemma ceiling_numeral_power [simp]: "\numeral x ^ n\ = numeral x ^ n" by (metis ceiling_of_int of_int_numeral of_int_power) subsection \Implementation of rational real numbers\ text \Formal constructor\ definition Ratreal :: "rat \ real" where [code_abbrev, simp]: "Ratreal = real_of_rat" code_datatype Ratreal text \Quasi-Numerals\ lemma [code_abbrev]: "real_of_rat (numeral k) = numeral k" "real_of_rat (- numeral k) = - numeral k" "real_of_rat (rat_of_int a) = real_of_int a" by simp_all lemma [code_post]: "real_of_rat 0 = 0" "real_of_rat 1 = 1" "real_of_rat (- 1) = - 1" "real_of_rat (1 / numeral k) = 1 / numeral k" "real_of_rat (numeral k / numeral l) = numeral k / numeral l" "real_of_rat (- (1 / numeral k)) = - (1 / numeral k)" "real_of_rat (- (numeral k / numeral l)) = - (numeral k / numeral l)" by (simp_all add: of_rat_divide of_rat_minus) text \Operations\ lemma zero_real_code [code]: "0 = Ratreal 0" by simp lemma one_real_code [code]: "1 = Ratreal 1" by simp instantiation real :: equal begin definition "HOL.equal x y \ x - y = 0" for x :: real instance by standard (simp add: equal_real_def) lemma real_equal_code [code]: "HOL.equal (Ratreal x) (Ratreal y) \ HOL.equal x y" by (simp add: equal_real_def equal) lemma [code nbe]: "HOL.equal x x \ True" for x :: real by (rule equal_refl) end lemma real_less_eq_code [code]: "Ratreal x \ Ratreal y \ x \ y" by (simp add: of_rat_less_eq) lemma real_less_code [code]: "Ratreal x < Ratreal y \ x < y" by (simp add: of_rat_less) lemma real_plus_code [code]: "Ratreal x + Ratreal y = Ratreal (x + y)" by (simp add: of_rat_add) lemma real_times_code [code]: "Ratreal x * Ratreal y = Ratreal (x * y)" by (simp add: of_rat_mult) lemma real_uminus_code [code]: "- Ratreal x = Ratreal (- x)" by (simp add: of_rat_minus) lemma real_minus_code [code]: "Ratreal x - Ratreal y = Ratreal (x - y)" by (simp add: of_rat_diff) lemma real_inverse_code [code]: "inverse (Ratreal x) = Ratreal (inverse x)" by (simp add: of_rat_inverse) lemma real_divide_code [code]: "Ratreal x / Ratreal y = Ratreal (x / y)" by (simp add: of_rat_divide) lemma real_floor_code [code]: "\Ratreal x\ = \x\" by (metis Ratreal_def floor_le_iff floor_unique le_floor_iff of_int_floor_le of_rat_of_int_eq real_less_eq_code) text \Quickcheck\ definition (in term_syntax) valterm_ratreal :: "rat \ (unit \ Code_Evaluation.term) \ real \ (unit \ Code_Evaluation.term)" where [code_unfold]: "valterm_ratreal k = Code_Evaluation.valtermify Ratreal {\} k" notation fcomp (infixl "\>" 60) notation scomp (infixl "\\" 60) instantiation real :: random begin definition "Quickcheck_Random.random i = Quickcheck_Random.random i \\ (\r. Pair (valterm_ratreal r))" instance .. end no_notation fcomp (infixl "\>" 60) no_notation scomp (infixl "\\" 60) instantiation real :: exhaustive begin definition "exhaustive_real f d = Quickcheck_Exhaustive.exhaustive (\r. f (Ratreal r)) d" instance .. end instantiation real :: full_exhaustive begin definition "full_exhaustive_real f d = Quickcheck_Exhaustive.full_exhaustive (\r. f (valterm_ratreal r)) d" instance .. end instantiation real :: narrowing begin definition "narrowing_real = Quickcheck_Narrowing.apply (Quickcheck_Narrowing.cons Ratreal) narrowing" instance .. end subsection \Setup for Nitpick\ declaration \ Nitpick_HOL.register_frac_type \<^type_name>\real\ [(\<^const_name>\zero_real_inst.zero_real\, \<^const_name>\Nitpick.zero_frac\), (\<^const_name>\one_real_inst.one_real\, \<^const_name>\Nitpick.one_frac\), (\<^const_name>\plus_real_inst.plus_real\, \<^const_name>\Nitpick.plus_frac\), (\<^const_name>\times_real_inst.times_real\, \<^const_name>\Nitpick.times_frac\), (\<^const_name>\uminus_real_inst.uminus_real\, \<^const_name>\Nitpick.uminus_frac\), (\<^const_name>\inverse_real_inst.inverse_real\, \<^const_name>\Nitpick.inverse_frac\), (\<^const_name>\ord_real_inst.less_real\, \<^const_name>\Nitpick.less_frac\), (\<^const_name>\ord_real_inst.less_eq_real\, \<^const_name>\Nitpick.less_eq_frac\)] \ lemmas [nitpick_unfold] = inverse_real_inst.inverse_real one_real_inst.one_real ord_real_inst.less_real ord_real_inst.less_eq_real plus_real_inst.plus_real times_real_inst.times_real uminus_real_inst.uminus_real zero_real_inst.zero_real subsection \Setup for SMT\ ML_file \Tools/SMT/smt_real.ML\ ML_file \Tools/SMT/z3_real.ML\ lemma [z3_rule]: "0 + x = x" "x + 0 = x" "0 * x = 0" "1 * x = x" "-x = -1 * x" "x + y = y + x" for x y :: real by auto subsection \Setup for Argo\ ML_file \Tools/Argo/argo_real.ML\ end