(* Title: HOL/Proofs/Lambda/WeakNorm.thy Author: Stefan Berghofer Copyright 2003 TU Muenchen *) section \Weak normalization for simply-typed lambda calculus\ theory WeakNorm imports LambdaType NormalForm "HOL-Library.Realizers" "HOL-Library.Code_Target_Int" begin text \ Formalization by Stefan Berghofer. Partly based on a paper proof by Felix Joachimski and Ralph Matthes @{cite "Matthes-Joachimski-AML"}. \ subsection \Main theorems\ lemma norm_list: assumes f_compat: "\t t'. t \\<^sub>\\<^sup>* t' \ f t \\<^sub>\\<^sup>* f t'" and f_NF: "\t. NF t \ NF (f t)" and uNF: "NF u" and uT: "e \ u : T" shows "\Us. e\i:T\ \ as : Us \ listall (\t. \e T' u i. e\i:T\ \ t : T' \ NF u \ e \ u : T \ (\t'. t[u/i] \\<^sub>\\<^sup>* t' \ NF t')) as \ \as'. \j. Var j \\ map (\t. f (t[u/i])) as \\<^sub>\\<^sup>* Var j \\ map f as' \ NF (Var j \\ map f as')" (is "\Us. _ \ listall ?R as \ \as'. ?ex Us as as'") proof (induct as rule: rev_induct) case (Nil Us) with Var_NF have "?ex Us [] []" by simp thus ?case .. next case (snoc b bs Us) have "e\i:T\ \ bs @ [b] : Us" by fact then obtain Vs W where Us: "Us = Vs @ [W]" and bs: "e\i:T\ \ bs : Vs" and bT: "e\i:T\ \ b : W" by (rule types_snocE) from snoc have "listall ?R bs" by simp with bs have "\bs'. ?ex Vs bs bs'" by (rule snoc) then obtain bs' where bsred: "Var j \\ map (\t. f (t[u/i])) bs \\<^sub>\\<^sup>* Var j \\ map f bs'" and bsNF: "NF (Var j \\ map f bs')" for j by iprover from snoc have "?R b" by simp with bT and uNF and uT have "\b'. b[u/i] \\<^sub>\\<^sup>* b' \ NF b'" by iprover then obtain b' where bred: "b[u/i] \\<^sub>\\<^sup>* b'" and bNF: "NF b'" by iprover from bsNF [of 0] have "listall NF (map f bs')" by (rule App_NF_D) moreover have "NF (f b')" using bNF by (rule f_NF) ultimately have "listall NF (map f (bs' @ [b']))" by simp hence "\j. NF (Var j \\ map f (bs' @ [b']))" by (rule NF.App) moreover from bred have "f (b[u/i]) \\<^sub>\\<^sup>* f b'" by (rule f_compat) with bsred have "\j. (Var j \\ map (\t. f (t[u/i])) bs) \ f (b[u/i]) \\<^sub>\\<^sup>* (Var j \\ map f bs') \ f b'" by (rule rtrancl_beta_App) ultimately have "?ex Us (bs @ [b]) (bs' @ [b'])" by simp thus ?case .. qed lemma subst_type_NF: "\t e T u i. NF t \ e\i:U\ \ t : T \ NF u \ e \ u : U \ \t'. t[u/i] \\<^sub>\\<^sup>* t' \ NF t'" (is "PROP ?P U" is "\t e T u i. _ \ PROP ?Q t e T u i U") proof (induct U) fix T t let ?R = "\t. \e T' u i. e\i:T\ \ t : T' \ NF u \ e \ u : T \ (\t'. t[u/i] \\<^sub>\\<^sup>* t' \ NF t')" assume MI1: "\T1 T2. T = T1 \ T2 \ PROP ?P T1" assume MI2: "\T1 T2. T = T1 \ T2 \ PROP ?P T2" assume "NF t" thus "\e T' u i. PROP ?Q t e T' u i T" proof induct fix e T' u i assume uNF: "NF u" and uT: "e \ u : T" { case (App ts x e1 T'1 u1 i1) assume "e\i:T\ \ Var x \\ ts : T'" then obtain Us where varT: "e\i:T\ \ Var x : Us \ T'" and argsT: "e\i:T\ \ ts : Us" by (rule var_app_typesE) from nat_eq_dec show "\t'. (Var x \\ ts)[u/i] \\<^sub>\\<^sup>* t' \ NF t'" proof assume eq: "x = i" show ?thesis proof (cases ts) case Nil with eq have "(Var x \\ [])[u/i] \\<^sub>\\<^sup>* u" by simp with Nil and uNF show ?thesis by simp iprover next case (Cons a as) with argsT obtain T'' Ts where Us: "Us = T'' # Ts" by (cases Us) (rule FalseE, simp) from varT and Us have varT: "e\i:T\ \ Var x : T'' \ Ts \ T'" by simp from varT eq have T: "T = T'' \ Ts \ T'" by cases auto with uT have uT': "e \ u : T'' \ Ts \ T'" by simp from argsT Us Cons have argsT': "e\i:T\ \ as : Ts" by simp from argsT Us Cons have argT: "e\i:T\ \ a : T''" by simp from argT uT refl have aT: "e \ a[u/i] : T''" by (rule subst_lemma) from App and Cons have "listall ?R as" by simp (iprover dest: listall_conj2) with lift_preserves_beta' lift_NF uNF uT argsT' have "\as'. \j. Var j \\ map (\t. lift (t[u/i]) 0) as \\<^sub>\\<^sup>* Var j \\ map (\t. lift t 0) as' \ NF (Var j \\ map (\t. lift t 0) as')" by (rule norm_list) then obtain as' where asred: "Var 0 \\ map (\t. lift (t[u/i]) 0) as \\<^sub>\\<^sup>* Var 0 \\ map (\t. lift t 0) as'" and asNF: "NF (Var 0 \\ map (\t. lift t 0) as')" by iprover from App and Cons have "?R a" by simp with argT and uNF and uT have "\a'. a[u/i] \\<^sub>\\<^sup>* a' \ NF a'" by iprover then obtain a' where ared: "a[u/i] \\<^sub>\\<^sup>* a'" and aNF: "NF a'" by iprover from uNF have "NF (lift u 0)" by (rule lift_NF) hence "\u'. lift u 0 \ Var 0 \\<^sub>\\<^sup>* u' \ NF u'" by (rule app_Var_NF) then obtain u' where ured: "lift u 0 \ Var 0 \\<^sub>\\<^sup>* u'" and u'NF: "NF u'" by iprover from T and u'NF have "\ua. u'[a'/0] \\<^sub>\\<^sup>* ua \ NF ua" proof (rule MI1) have "e\0:T''\ \ lift u 0 \ Var 0 : Ts \ T'" proof (rule typing.App) from uT' show "e\0:T''\ \ lift u 0 : T'' \ Ts \ T'" by (rule lift_type) show "e\0:T''\ \ Var 0 : T''" by (rule typing.Var) simp qed with ured show "e\0:T''\ \ u' : Ts \ T'" by (rule subject_reduction') from ared aT show "e \ a' : T''" by (rule subject_reduction') show "NF a'" by fact qed then obtain ua where uared: "u'[a'/0] \\<^sub>\\<^sup>* ua" and uaNF: "NF ua" by iprover from ared have "(lift u 0 \ Var 0)[a[u/i]/0] \\<^sub>\\<^sup>* (lift u 0 \ Var 0)[a'/0]" by (rule subst_preserves_beta2') also from ured have "(lift u 0 \ Var 0)[a'/0] \\<^sub>\\<^sup>* u'[a'/0]" by (rule subst_preserves_beta') also note uared finally have "(lift u 0 \ Var 0)[a[u/i]/0] \\<^sub>\\<^sup>* ua" . hence uared': "u \ a[u/i] \\<^sub>\\<^sup>* ua" by simp from T asNF _ uaNF have "\r. (Var 0 \\ map (\t. lift t 0) as')[ua/0] \\<^sub>\\<^sup>* r \ NF r" proof (rule MI2) have "e\0:Ts \ T'\ \ Var 0 \\ map (\t. lift (t[u/i]) 0) as : T'" proof (rule list_app_typeI) show "e\0:Ts \ T'\ \ Var 0 : Ts \ T'" by (rule typing.Var) simp from uT argsT' have "e \ map (\t. t[u/i]) as : Ts" by (rule substs_lemma) hence "e\0:Ts \ T'\ \ map (\t. lift t 0) (map (\t. t[u/i]) as) : Ts" by (rule lift_types) thus "e\0:Ts \ T'\ \ map (\t. lift (t[u/i]) 0) as : Ts" by (simp_all add: o_def) qed with asred show "e\0:Ts \ T'\ \ Var 0 \\ map (\t. lift t 0) as' : T'" by (rule subject_reduction') from argT uT refl have "e \ a[u/i] : T''" by (rule subst_lemma) with uT' have "e \ u \ a[u/i] : Ts \ T'" by (rule typing.App) with uared' show "e \ ua : Ts \ T'" by (rule subject_reduction') qed then obtain r where rred: "(Var 0 \\ map (\t. lift t 0) as')[ua/0] \\<^sub>\\<^sup>* r" and rnf: "NF r" by iprover from asred have "(Var 0 \\ map (\t. lift (t[u/i]) 0) as)[u \ a[u/i]/0] \\<^sub>\\<^sup>* (Var 0 \\ map (\t. lift t 0) as')[u \ a[u/i]/0]" by (rule subst_preserves_beta') also from uared' have "(Var 0 \\ map (\t. lift t 0) as')[u \ a[u/i]/0] \\<^sub>\\<^sup>* (Var 0 \\ map (\t. lift t 0) as')[ua/0]" by (rule subst_preserves_beta2') also note rred finally have "(Var 0 \\ map (\t. lift (t[u/i]) 0) as)[u \ a[u/i]/0] \\<^sub>\\<^sup>* r" . with rnf Cons eq show ?thesis by (simp add: o_def) iprover qed next assume neq: "x \ i" from App have "listall ?R ts" by (iprover dest: listall_conj2) with uNF uT argsT have "\ts'. \j. Var j \\ map (\t. t[u/i]) ts \\<^sub>\\<^sup>* Var j \\ ts' \ NF (Var j \\ ts')" (is "\ts'. ?ex ts'") by (rule norm_list [of "\t. t", simplified]) then obtain ts' where NF: "?ex ts'" .. from nat_le_dec show ?thesis proof assume "i < x" with NF show ?thesis by simp iprover next assume "\ (i < x)" with NF neq show ?thesis by (simp add: subst_Var) iprover qed qed next case (Abs r e1 T'1 u1 i1) assume absT: "e\i:T\ \ Abs r : T'" then obtain R S where "e\0:R\\Suc i:T\ \ r : S" by (rule abs_typeE) simp moreover have "NF (lift u 0)" using \NF u\ by (rule lift_NF) moreover have "e\0:R\ \ lift u 0 : T" using uT by (rule lift_type) ultimately have "\t'. r[lift u 0/Suc i] \\<^sub>\\<^sup>* t' \ NF t'" by (rule Abs) thus "\t'. Abs r[u/i] \\<^sub>\\<^sup>* t' \ NF t'" by simp (iprover intro: rtrancl_beta_Abs NF.Abs) } qed qed \ \A computationally relevant copy of @{term "e \ t : T"}\ inductive rtyping :: "(nat \ type) \ dB \ type \ bool" ("_ \\<^sub>R _ : _" [50, 50, 50] 50) where Var: "e x = T \ e \\<^sub>R Var x : T" | Abs: "e\0:T\ \\<^sub>R t : U \ e \\<^sub>R Abs t : (T \ U)" | App: "e \\<^sub>R s : T \ U \ e \\<^sub>R t : T \ e \\<^sub>R (s \ t) : U" lemma rtyping_imp_typing: "e \\<^sub>R t : T \ e \ t : T" apply (induct set: rtyping) apply (erule typing.Var) apply (erule typing.Abs) apply (erule typing.App) apply assumption done theorem type_NF: assumes "e \\<^sub>R t : T" shows "\t'. t \\<^sub>\\<^sup>* t' \ NF t'" using assms proof induct case Var show ?case by (iprover intro: Var_NF) next case Abs thus ?case by (iprover intro: rtrancl_beta_Abs NF.Abs) next case (App e s T U t) from App obtain s' t' where sred: "s \\<^sub>\\<^sup>* s'" and "NF s'" and tred: "t \\<^sub>\\<^sup>* t'" and tNF: "NF t'" by iprover have "\u. (Var 0 \ lift t' 0)[s'/0] \\<^sub>\\<^sup>* u \ NF u" proof (rule subst_type_NF) have "NF (lift t' 0)" using tNF by (rule lift_NF) hence "listall NF [lift t' 0]" by (rule listall_cons) (rule listall_nil) hence "NF (Var 0 \\ [lift t' 0])" by (rule NF.App) thus "NF (Var 0 \ lift t' 0)" by simp show "e\0:T \ U\ \ Var 0 \ lift t' 0 : U" proof (rule typing.App) show "e\0:T \ U\ \ Var 0 : T \ U" by (rule typing.Var) simp from tred have "e \ t' : T" by (rule subject_reduction') (rule rtyping_imp_typing, rule App.hyps) thus "e\0:T \ U\ \ lift t' 0 : T" by (rule lift_type) qed from sred show "e \ s' : T \ U" by (rule subject_reduction') (rule rtyping_imp_typing, rule App.hyps) show "NF s'" by fact qed then obtain u where ured: "s' \ t' \\<^sub>\\<^sup>* u" and unf: "NF u" by simp iprover from sred tred have "s \ t \\<^sub>\\<^sup>* s' \ t'" by (rule rtrancl_beta_App) hence "s \ t \\<^sub>\\<^sup>* u" using ured by (rule rtranclp_trans) with unf show ?case by iprover qed subsection \Extracting the program\ declare NF.induct [ind_realizer] declare rtranclp.induct [ind_realizer irrelevant] declare rtyping.induct [ind_realizer] lemmas [extraction_expand] = conj_assoc listall_cons_eq extract type_NF lemma rtranclR_rtrancl_eq: "rtranclpR r a b = r\<^sup>*\<^sup>* a b" apply (rule iffI) apply (erule rtranclpR.induct) apply (rule rtranclp.rtrancl_refl) apply (erule rtranclp.rtrancl_into_rtrancl) apply assumption apply (erule rtranclp.induct) apply (rule rtranclpR.rtrancl_refl) apply (erule rtranclpR.rtrancl_into_rtrancl) apply assumption done lemma NFR_imp_NF: "NFR nf t \ NF t" apply (erule NFR.induct) apply (rule NF.intros) apply (simp add: listall_def) apply (erule NF.intros) done text_raw \ \begin{figure} \renewcommand{\isastyle}{\scriptsize\it}% @{thm [display,eta_contract=false,margin=100] subst_type_NF_def} \renewcommand{\isastyle}{\small\it}% \caption{Program extracted from \subst_type_NF\} \label{fig:extr-subst-type-nf} \end{figure} \begin{figure} \renewcommand{\isastyle}{\scriptsize\it}% @{thm [display,margin=100] subst_Var_NF_def} @{thm [display,margin=100] app_Var_NF_def} @{thm [display,margin=100] lift_NF_def} @{thm [display,eta_contract=false,margin=100] type_NF_def} \renewcommand{\isastyle}{\small\it}% \caption{Program extracted from lemmas and main theorem} \label{fig:extr-type-nf} \end{figure} \ text \ The program corresponding to the proof of the central lemma, which performs substitution and normalization, is shown in Figure \ref{fig:extr-subst-type-nf}. The correctness theorem corresponding to the program \subst_type_NF\ is @{thm [display,margin=100] subst_type_NF_correctness [simplified rtranclR_rtrancl_eq Collect_mem_eq, no_vars]} where \NFR\ is the realizability predicate corresponding to the datatype \NFT\, which is inductively defined by the rules \pagebreak @{thm [display,margin=90] NFR.App [of ts nfs x] NFR.Abs [of nf t]} The programs corresponding to the main theorem \type_NF\, as well as to some lemmas, are shown in Figure \ref{fig:extr-type-nf}. The correctness statement for the main function \type_NF\ is @{thm [display,margin=100] type_NF_correctness [simplified rtranclR_rtrancl_eq Collect_mem_eq, no_vars]} where the realizability predicate \rtypingR\ corresponding to the computationally relevant version of the typing judgement is inductively defined by the rules @{thm [display,margin=100] rtypingR.Var [no_vars] rtypingR.Abs [of ty, no_vars] rtypingR.App [of ty e s T U ty' t]} \ subsection \Generating executable code\ instantiation NFT :: default begin definition "default = Dummy ()" instance .. end instantiation dB :: default begin definition "default = dB.Var 0" instance .. end instantiation prod :: (default, default) default begin definition "default = (default, default)" instance .. end instantiation list :: (type) default begin definition "default = []" instance .. end instantiation "fun" :: (type, default) default begin definition "default = (\x. default)" instance .. end definition int_of_nat :: "nat \ int" where "int_of_nat = of_nat" text \ The following functions convert between Isabelle's built-in {\tt term} datatype and the generated {\tt dB} datatype. This allows to generate example terms using Isabelle's parser and inspect normalized terms using Isabelle's pretty printer. \ ML \ val nat_of_integer = @{code nat} o @{code int_of_integer}; fun dBtype_of_typ (Type ("fun", [T, U])) = @{code Fun} (dBtype_of_typ T, dBtype_of_typ U) | dBtype_of_typ (TFree (s, _)) = (case raw_explode s of ["'", a] => @{code Atom} (nat_of_integer (ord a - 97)) | _ => error "dBtype_of_typ: variable name") | dBtype_of_typ _ = error "dBtype_of_typ: bad type"; fun dB_of_term (Bound i) = @{code dB.Var} (nat_of_integer i) | dB_of_term (t $ u) = @{code dB.App} (dB_of_term t, dB_of_term u) | dB_of_term (Abs (_, _, t)) = @{code dB.Abs} (dB_of_term t) | dB_of_term _ = error "dB_of_term: bad term"; fun term_of_dB Ts (Type ("fun", [T, U])) (@{code dB.Abs} dBt) = Abs ("x", T, term_of_dB (T :: Ts) U dBt) | term_of_dB Ts _ dBt = term_of_dB' Ts dBt and term_of_dB' Ts (@{code dB.Var} n) = Bound (@{code integer_of_nat} n) | term_of_dB' Ts (@{code dB.App} (dBt, dBu)) = let val t = term_of_dB' Ts dBt in case fastype_of1 (Ts, t) of Type ("fun", [T, _]) => t $ term_of_dB Ts T dBu | _ => error "term_of_dB: function type expected" end | term_of_dB' _ _ = error "term_of_dB: term not in normal form"; fun typing_of_term Ts e (Bound i) = @{code Var} (e, nat_of_integer i, dBtype_of_typ (nth Ts i)) | typing_of_term Ts e (t $ u) = (case fastype_of1 (Ts, t) of Type ("fun", [T, U]) => @{code App} (e, dB_of_term t, dBtype_of_typ T, dBtype_of_typ U, dB_of_term u, typing_of_term Ts e t, typing_of_term Ts e u) | _ => error "typing_of_term: function type expected") | typing_of_term Ts e (Abs (_, T, t)) = let val dBT = dBtype_of_typ T in @{code Abs} (e, dBT, dB_of_term t, dBtype_of_typ (fastype_of1 (T :: Ts, t)), typing_of_term (T :: Ts) (@{code shift} e @{code "0::nat"} dBT) t) end | typing_of_term _ _ _ = error "typing_of_term: bad term"; fun dummyf _ = error "dummy"; val ct1 = @{cterm "%f. ((%f x. f (f (f x))) ((%f x. f (f (f (f x)))) f))"}; val (dB1, _) = @{code type_NF} (typing_of_term [] dummyf (Thm.term_of ct1)); val ct1' = Thm.cterm_of @{context} (term_of_dB [] (Thm.typ_of_cterm ct1) dB1); val ct2 = @{cterm "%f x. (%x. f x x) ((%x. f x x) ((%x. f x x) ((%x. f x x) ((%x. f x x) ((%x. f x x) x)))))"}; val (dB2, _) = @{code type_NF} (typing_of_term [] dummyf (Thm.term_of ct2)); val ct2' = Thm.cterm_of @{context} (term_of_dB [] (Thm.typ_of_cterm ct2) dB2); \ end