(* Title: HOL/Proofs/Lambda/ParRed.thy Author: Tobias Nipkow Copyright 1995 TU Muenchen Properties of => and "cd", in particular the diamond property of => and confluence of beta. *) section \Parallel reduction and a complete developments\ theory ParRed imports Lambda Commutation begin subsection \Parallel reduction\ inductive par_beta :: "[dB, dB] => bool" (infixl "=>" 50) where var [simp, intro!]: "Var n => Var n" | abs [simp, intro!]: "s => t ==> Abs s => Abs t" | app [simp, intro!]: "[| s => s'; t => t' |] ==> s \ t => s' \ t'" | beta [simp, intro!]: "[| s => s'; t => t' |] ==> (Abs s) \ t => s'[t'/0]" inductive_cases par_beta_cases [elim!]: "Var n => t" "Abs s => Abs t" "(Abs s) \ t => u" "s \ t => u" "Abs s => t" subsection \Inclusions\ text \\beta \ par_beta \ beta\<^sup>*\ \medskip\ lemma par_beta_varL [simp]: "(Var n => t) = (t = Var n)" by blast lemma par_beta_refl [simp]: "t => t" (* par_beta_refl [intro!] causes search to blow up *) by (induct t) simp_all lemma beta_subset_par_beta: "beta <= par_beta" apply (rule predicate2I) apply (erule beta.induct) apply (blast intro!: par_beta_refl)+ done lemma par_beta_subset_beta: "par_beta \ beta\<^sup>*\<^sup>*" apply (rule predicate2I) apply (erule par_beta.induct) apply blast apply (blast del: rtranclp.rtrancl_refl intro: rtranclp.rtrancl_into_rtrancl)+ \ \@{thm[source] rtrancl_refl} complicates the proof by increasing the branching factor\ done subsection \Misc properties of \par_beta\\ lemma par_beta_lift [simp]: "t => t' \ lift t n => lift t' n" by (induct t arbitrary: t' n) fastforce+ lemma par_beta_subst: "s => s' \ t => t' \ t[s/n] => t'[s'/n]" apply (induct t arbitrary: s s' t' n) apply (simp add: subst_Var) apply (erule par_beta_cases) apply simp apply (simp add: subst_subst [symmetric]) apply (fastforce intro!: par_beta_lift) apply fastforce done subsection \Confluence (directly)\ lemma diamond_par_beta: "diamond par_beta" apply (unfold diamond_def commute_def square_def) apply (rule impI [THEN allI [THEN allI]]) apply (erule par_beta.induct) apply (blast intro!: par_beta_subst)+ done subsection \Complete developments\ fun cd :: "dB => dB" where "cd (Var n) = Var n" | "cd (Var n \ t) = Var n \ cd t" | "cd ((s1 \ s2) \ t) = cd (s1 \ s2) \ cd t" | "cd (Abs u \ t) = (cd u)[cd t/0]" | "cd (Abs s) = Abs (cd s)" lemma par_beta_cd: "s => t \ t => cd s" apply (induct s arbitrary: t rule: cd.induct) apply auto apply (fast intro!: par_beta_subst) done subsection \Confluence (via complete developments)\ lemma diamond_par_beta2: "diamond par_beta" apply (unfold diamond_def commute_def square_def) apply (blast intro: par_beta_cd) done theorem beta_confluent: "confluent beta" apply (rule diamond_par_beta2 diamond_to_confluence par_beta_subset_beta beta_subset_par_beta)+ done end