(* Title: HOL/Proofs/Lambda/NormalForm.thy Author: Stefan Berghofer, TU Muenchen, 2003 *) section \Inductive characterization of lambda terms in normal form\ theory NormalForm imports ListBeta begin subsection \Terms in normal form\ definition listall :: "('a \ bool) \ 'a list \ bool" where "listall P xs \ (\i. i < length xs \ P (xs ! i))" declare listall_def [extraction_expand_def] theorem listall_nil: "listall P []" by (simp add: listall_def) theorem listall_nil_eq [simp]: "listall P [] = True" by (iprover intro: listall_nil) theorem listall_cons: "P x \ listall P xs \ listall P (x # xs)" apply (simp add: listall_def) apply (rule allI impI)+ apply (case_tac i) apply simp+ done theorem listall_cons_eq [simp]: "listall P (x # xs) = (P x \ listall P xs)" apply (rule iffI) prefer 2 apply (erule conjE) apply (erule listall_cons) apply assumption apply (unfold listall_def) apply (rule conjI) apply (erule_tac x=0 in allE) apply simp apply simp apply (rule allI) apply (erule_tac x="Suc i" in allE) apply simp done lemma listall_conj1: "listall (\x. P x \ Q x) xs \ listall P xs" by (induct xs) simp_all lemma listall_conj2: "listall (\x. P x \ Q x) xs \ listall Q xs" by (induct xs) simp_all lemma listall_app: "listall P (xs @ ys) = (listall P xs \ listall P ys)" apply (induct xs) apply (rule iffI, simp, simp) apply (rule iffI, simp, simp) done lemma listall_snoc [simp]: "listall P (xs @ [x]) = (listall P xs \ P x)" apply (rule iffI) apply (simp add: listall_app)+ done lemma listall_cong [cong, extraction_expand]: "xs = ys \ listall P xs = listall P ys" \ \Currently needed for strange technical reasons\ by (unfold listall_def) simp text \ \<^term>\listsp\ is equivalent to \<^term>\listall\, but cannot be used for program extraction. \ lemma listall_listsp_eq: "listall P xs = listsp P xs" by (induct xs) (auto intro: listsp.intros) inductive NF :: "dB \ bool" where App: "listall NF ts \ NF (Var x \\ ts)" | Abs: "NF t \ NF (Abs t)" monos listall_def lemma nat_eq_dec: "\n::nat. m = n \ m \ n" apply (induct m) apply (case_tac n) apply (case_tac [3] n) apply (simp only: nat.simps, iprover?)+ done lemma nat_le_dec: "\n::nat. m < n \ \ (m < n)" apply (induct m) apply (case_tac n) apply (case_tac [3] n) apply (simp del: simp_thms, iprover?)+ done lemma App_NF_D: assumes NF: "NF (Var n \\ ts)" shows "listall NF ts" using NF by cases simp_all subsection \Properties of \NF\\ lemma Var_NF: "NF (Var n)" apply (subgoal_tac "NF (Var n \\ [])") apply simp apply (rule NF.App) apply simp done lemma Abs_NF: assumes NF: "NF (Abs t \\ ts)" shows "ts = []" using NF proof cases case (App us i) thus ?thesis by (simp add: Var_apps_neq_Abs_apps [THEN not_sym]) next case (Abs u) thus ?thesis by simp qed lemma subst_terms_NF: "listall NF ts \ listall (\t. \i j. NF (t[Var i/j])) ts \ listall NF (map (\t. t[Var i/j]) ts)" by (induct ts) simp_all lemma subst_Var_NF: "NF t \ NF (t[Var i/j])" apply (induct arbitrary: i j set: NF) apply simp apply (frule listall_conj1) apply (drule listall_conj2) apply (drule_tac i=i and j=j in subst_terms_NF) apply assumption apply (rule_tac m1=x and n1=j in nat_eq_dec [THEN disjE]) apply simp apply (erule NF.App) apply (rule_tac m1=j and n1=x in nat_le_dec [THEN disjE]) apply simp apply (iprover intro: NF.App) apply simp apply (iprover intro: NF.App) apply simp apply (iprover intro: NF.Abs) done lemma app_Var_NF: "NF t \ \t'. t \ Var i \\<^sub>\\<^sup>* t' \ NF t'" apply (induct set: NF) apply (simplesubst app_last) \ \Using \subst\ makes extraction fail\ apply (rule exI) apply (rule conjI) apply (rule rtranclp.rtrancl_refl) apply (rule NF.App) apply (drule listall_conj1) apply (simp add: listall_app) apply (rule Var_NF) apply (rule exI) apply (rule conjI) apply (rule rtranclp.rtrancl_into_rtrancl) apply (rule rtranclp.rtrancl_refl) apply (rule beta) apply (erule subst_Var_NF) done lemma lift_terms_NF: "listall NF ts \ listall (\t. \i. NF (lift t i)) ts \ listall NF (map (\t. lift t i) ts)" by (induct ts) simp_all lemma lift_NF: "NF t \ NF (lift t i)" apply (induct arbitrary: i set: NF) apply (frule listall_conj1) apply (drule listall_conj2) apply (drule_tac i=i in lift_terms_NF) apply assumption apply (rule_tac m1=x and n1=i in nat_le_dec [THEN disjE]) apply simp apply (rule NF.App) apply assumption apply simp apply (rule NF.App) apply assumption apply simp apply (rule NF.Abs) apply simp done text \ \<^term>\NF\ characterizes exactly the terms that are in normal form. \ lemma NF_eq: "NF t = (\t'. \ t \\<^sub>\ t')" proof assume "NF t" then have "\t'. \ t \\<^sub>\ t'" proof induct case (App ts t) show ?case proof assume "Var t \\ ts \\<^sub>\ t'" then obtain rs where "ts => rs" by (iprover dest: head_Var_reduction) with App show False by (induct rs arbitrary: ts) auto qed next case (Abs t) show ?case proof assume "Abs t \\<^sub>\ t'" then show False using Abs by cases simp_all qed qed then show "\t'. \ t \\<^sub>\ t'" .. next assume H: "\t'. \ t \\<^sub>\ t'" then show "NF t" proof (induct t rule: Apps_dB_induct) case (1 n ts) then have "\ts'. \ ts => ts'" by (iprover intro: apps_preserves_betas) with 1(1) have "listall NF ts" by (induct ts) auto then show ?case by (rule NF.App) next case (2 u ts) show ?case proof (cases ts) case Nil from 2 have "\u'. \ u \\<^sub>\ u'" by (auto intro: apps_preserves_beta) then have "NF u" by (rule 2) then have "NF (Abs u)" by (rule NF.Abs) with Nil show ?thesis by simp next case (Cons r rs) have "Abs u \ r \\<^sub>\ u[r/0]" .. then have "Abs u \ r \\ rs \\<^sub>\ u[r/0] \\ rs" by (rule apps_preserves_beta) with Cons have "Abs u \\ ts \\<^sub>\ u[r/0] \\ rs" by simp with 2 show ?thesis by iprover qed qed qed end