(* Title: HOL/Proofs/Lambda/Lambda.thy Author: Tobias Nipkow Copyright 1995 TU Muenchen *) section \Basic definitions of Lambda-calculus\ theory Lambda imports Main begin declare [[syntax_ambiguity_warning = false]] subsection \Lambda-terms in de Bruijn notation and substitution\ datatype dB = Var nat | App dB dB (infixl "\" 200) | Abs dB primrec lift :: "[dB, nat] => dB" where "lift (Var i) k = (if i < k then Var i else Var (i + 1))" | "lift (s \ t) k = lift s k \ lift t k" | "lift (Abs s) k = Abs (lift s (k + 1))" primrec subst :: "[dB, dB, nat] => dB" ("_[_'/_]" [300, 0, 0] 300) where (* FIXME base names *) subst_Var: "(Var i)[s/k] = (if k < i then Var (i - 1) else if i = k then s else Var i)" | subst_App: "(t \ u)[s/k] = t[s/k] \ u[s/k]" | subst_Abs: "(Abs t)[s/k] = Abs (t[lift s 0 / k+1])" declare subst_Var [simp del] text \Optimized versions of \<^term>\subst\ and \<^term>\lift\.\ primrec liftn :: "[nat, dB, nat] => dB" where "liftn n (Var i) k = (if i < k then Var i else Var (i + n))" | "liftn n (s \ t) k = liftn n s k \ liftn n t k" | "liftn n (Abs s) k = Abs (liftn n s (k + 1))" primrec substn :: "[dB, dB, nat] => dB" where "substn (Var i) s k = (if k < i then Var (i - 1) else if i = k then liftn k s 0 else Var i)" | "substn (t \ u) s k = substn t s k \ substn u s k" | "substn (Abs t) s k = Abs (substn t s (k + 1))" subsection \Beta-reduction\ inductive beta :: "[dB, dB] => bool" (infixl "\\<^sub>\" 50) where beta [simp, intro!]: "Abs s \ t \\<^sub>\ s[t/0]" | appL [simp, intro!]: "s \\<^sub>\ t ==> s \ u \\<^sub>\ t \ u" | appR [simp, intro!]: "s \\<^sub>\ t ==> u \ s \\<^sub>\ u \ t" | abs [simp, intro!]: "s \\<^sub>\ t ==> Abs s \\<^sub>\ Abs t" abbreviation beta_reds :: "[dB, dB] => bool" (infixl "\\<^sub>\\<^sup>*" 50) where "s \\<^sub>\\<^sup>* t == beta\<^sup>*\<^sup>* s t" inductive_cases beta_cases [elim!]: "Var i \\<^sub>\ t" "Abs r \\<^sub>\ s" "s \ t \\<^sub>\ u" declare if_not_P [simp] not_less_eq [simp] \ \don't add \r_into_rtrancl[intro!]\\ subsection \Congruence rules\ lemma rtrancl_beta_Abs [intro!]: "s \\<^sub>\\<^sup>* s' ==> Abs s \\<^sub>\\<^sup>* Abs s'" by (induct set: rtranclp) (blast intro: rtranclp.rtrancl_into_rtrancl)+ lemma rtrancl_beta_AppL: "s \\<^sub>\\<^sup>* s' ==> s \ t \\<^sub>\\<^sup>* s' \ t" by (induct set: rtranclp) (blast intro: rtranclp.rtrancl_into_rtrancl)+ lemma rtrancl_beta_AppR: "t \\<^sub>\\<^sup>* t' ==> s \ t \\<^sub>\\<^sup>* s \ t'" by (induct set: rtranclp) (blast intro: rtranclp.rtrancl_into_rtrancl)+ lemma rtrancl_beta_App [intro]: "[| s \\<^sub>\\<^sup>* s'; t \\<^sub>\\<^sup>* t' |] ==> s \ t \\<^sub>\\<^sup>* s' \ t'" by (blast intro!: rtrancl_beta_AppL rtrancl_beta_AppR intro: rtranclp_trans) subsection \Substitution-lemmas\ lemma subst_eq [simp]: "(Var k)[u/k] = u" by (simp add: subst_Var) lemma subst_gt [simp]: "i < j ==> (Var j)[u/i] = Var (j - 1)" by (simp add: subst_Var) lemma subst_lt [simp]: "j < i ==> (Var j)[u/i] = Var j" by (simp add: subst_Var) lemma lift_lift: "i < k + 1 \ lift (lift t i) (Suc k) = lift (lift t k) i" by (induct t arbitrary: i k) auto lemma lift_subst [simp]: "j < i + 1 \ lift (t[s/j]) i = (lift t (i + 1)) [lift s i / j]" by (induct t arbitrary: i j s) (simp_all add: diff_Suc subst_Var lift_lift split: nat.split) lemma lift_subst_lt: "i < j + 1 \ lift (t[s/j]) i = (lift t i) [lift s i / j + 1]" by (induct t arbitrary: i j s) (simp_all add: subst_Var lift_lift) lemma subst_lift [simp]: "(lift t k)[s/k] = t" by (induct t arbitrary: k s) simp_all lemma subst_subst: "i < j + 1 \ t[lift v i / Suc j][u[v/j]/i] = t[u/i][v/j]" by (induct t arbitrary: i j u v) (simp_all add: diff_Suc subst_Var lift_lift [symmetric] lift_subst_lt split: nat.split) subsection \Equivalence proof for optimized substitution\ lemma liftn_0 [simp]: "liftn 0 t k = t" by (induct t arbitrary: k) (simp_all add: subst_Var) lemma liftn_lift [simp]: "liftn (Suc n) t k = lift (liftn n t k) k" by (induct t arbitrary: k) (simp_all add: subst_Var) lemma substn_subst_n [simp]: "substn t s n = t[liftn n s 0 / n]" by (induct t arbitrary: n) (simp_all add: subst_Var) theorem substn_subst_0: "substn t s 0 = t[s/0]" by simp subsection \Preservation theorems\ text \Not used in Church-Rosser proof, but in Strong Normalization. \medskip\ theorem subst_preserves_beta [simp]: "r \\<^sub>\ s ==> r[t/i] \\<^sub>\ s[t/i]" by (induct arbitrary: t i set: beta) (simp_all add: subst_subst [symmetric]) theorem subst_preserves_beta': "r \\<^sub>\\<^sup>* s ==> r[t/i] \\<^sub>\\<^sup>* s[t/i]" apply (induct set: rtranclp) apply (rule rtranclp.rtrancl_refl) apply (erule rtranclp.rtrancl_into_rtrancl) apply (erule subst_preserves_beta) done theorem lift_preserves_beta [simp]: "r \\<^sub>\ s ==> lift r i \\<^sub>\ lift s i" by (induct arbitrary: i set: beta) auto theorem lift_preserves_beta': "r \\<^sub>\\<^sup>* s ==> lift r i \\<^sub>\\<^sup>* lift s i" apply (induct set: rtranclp) apply (rule rtranclp.rtrancl_refl) apply (erule rtranclp.rtrancl_into_rtrancl) apply (erule lift_preserves_beta) done theorem subst_preserves_beta2 [simp]: "r \\<^sub>\ s ==> t[r/i] \\<^sub>\\<^sup>* t[s/i]" apply (induct t arbitrary: r s i) apply (simp add: subst_Var r_into_rtranclp) apply (simp add: rtrancl_beta_App) apply (simp add: rtrancl_beta_Abs) done theorem subst_preserves_beta2': "r \\<^sub>\\<^sup>* s ==> t[r/i] \\<^sub>\\<^sup>* t[s/i]" apply (induct set: rtranclp) apply (rule rtranclp.rtrancl_refl) apply (erule rtranclp_trans) apply (erule subst_preserves_beta2) done end