(* Title: HOL/Library/Nat_Bijection.thy Author: Brian Huffman Author: Florian Haftmann Author: Stefan Richter Author: Tobias Nipkow Author: Alexander Krauss *) section \Bijections between natural numbers and other types\ theory Nat_Bijection imports Main begin subsection \Type \<^typ>\nat \ nat\\ text \Triangle numbers: 0, 1, 3, 6, 10, 15, ...\ definition triangle :: "nat \ nat" where "triangle n = (n * Suc n) div 2" lemma triangle_0 [simp]: "triangle 0 = 0" by (simp add: triangle_def) lemma triangle_Suc [simp]: "triangle (Suc n) = triangle n + Suc n" by (simp add: triangle_def) definition prod_encode :: "nat \ nat \ nat" where "prod_encode = (\(m, n). triangle (m + n) + m)" text \In this auxiliary function, \<^term>\triangle k + m\ is an invariant.\ fun prod_decode_aux :: "nat \ nat \ nat \ nat" where "prod_decode_aux k m = (if m \ k then (m, k - m) else prod_decode_aux (Suc k) (m - Suc k))" declare prod_decode_aux.simps [simp del] definition prod_decode :: "nat \ nat \ nat" where "prod_decode = prod_decode_aux 0" lemma prod_encode_prod_decode_aux: "prod_encode (prod_decode_aux k m) = triangle k + m" apply (induct k m rule: prod_decode_aux.induct) apply (subst prod_decode_aux.simps) apply (simp add: prod_encode_def) done lemma prod_decode_inverse [simp]: "prod_encode (prod_decode n) = n" by (simp add: prod_decode_def prod_encode_prod_decode_aux) lemma prod_decode_triangle_add: "prod_decode (triangle k + m) = prod_decode_aux k m" apply (induct k arbitrary: m) apply (simp add: prod_decode_def) apply (simp only: triangle_Suc add.assoc) apply (subst prod_decode_aux.simps) apply simp done lemma prod_encode_inverse [simp]: "prod_decode (prod_encode x) = x" unfolding prod_encode_def apply (induct x) apply (simp add: prod_decode_triangle_add) apply (subst prod_decode_aux.simps) apply simp done lemma inj_prod_encode: "inj_on prod_encode A" by (rule inj_on_inverseI) (rule prod_encode_inverse) lemma inj_prod_decode: "inj_on prod_decode A" by (rule inj_on_inverseI) (rule prod_decode_inverse) lemma surj_prod_encode: "surj prod_encode" by (rule surjI) (rule prod_decode_inverse) lemma surj_prod_decode: "surj prod_decode" by (rule surjI) (rule prod_encode_inverse) lemma bij_prod_encode: "bij prod_encode" by (rule bijI [OF inj_prod_encode surj_prod_encode]) lemma bij_prod_decode: "bij prod_decode" by (rule bijI [OF inj_prod_decode surj_prod_decode]) lemma prod_encode_eq: "prod_encode x = prod_encode y \ x = y" by (rule inj_prod_encode [THEN inj_eq]) lemma prod_decode_eq: "prod_decode x = prod_decode y \ x = y" by (rule inj_prod_decode [THEN inj_eq]) text \Ordering properties\ lemma le_prod_encode_1: "a \ prod_encode (a, b)" by (simp add: prod_encode_def) lemma le_prod_encode_2: "b \ prod_encode (a, b)" by (induct b) (simp_all add: prod_encode_def) subsection \Type \<^typ>\nat + nat\\ definition sum_encode :: "nat + nat \ nat" where "sum_encode x = (case x of Inl a \ 2 * a | Inr b \ Suc (2 * b))" definition sum_decode :: "nat \ nat + nat" where "sum_decode n = (if even n then Inl (n div 2) else Inr (n div 2))" lemma sum_encode_inverse [simp]: "sum_decode (sum_encode x) = x" by (induct x) (simp_all add: sum_decode_def sum_encode_def) lemma sum_decode_inverse [simp]: "sum_encode (sum_decode n) = n" by (simp add: even_two_times_div_two sum_decode_def sum_encode_def) lemma inj_sum_encode: "inj_on sum_encode A" by (rule inj_on_inverseI) (rule sum_encode_inverse) lemma inj_sum_decode: "inj_on sum_decode A" by (rule inj_on_inverseI) (rule sum_decode_inverse) lemma surj_sum_encode: "surj sum_encode" by (rule surjI) (rule sum_decode_inverse) lemma surj_sum_decode: "surj sum_decode" by (rule surjI) (rule sum_encode_inverse) lemma bij_sum_encode: "bij sum_encode" by (rule bijI [OF inj_sum_encode surj_sum_encode]) lemma bij_sum_decode: "bij sum_decode" by (rule bijI [OF inj_sum_decode surj_sum_decode]) lemma sum_encode_eq: "sum_encode x = sum_encode y \ x = y" by (rule inj_sum_encode [THEN inj_eq]) lemma sum_decode_eq: "sum_decode x = sum_decode y \ x = y" by (rule inj_sum_decode [THEN inj_eq]) subsection \Type \<^typ>\int\\ definition int_encode :: "int \ nat" where "int_encode i = sum_encode (if 0 \ i then Inl (nat i) else Inr (nat (- i - 1)))" definition int_decode :: "nat \ int" where "int_decode n = (case sum_decode n of Inl a \ int a | Inr b \ - int b - 1)" lemma int_encode_inverse [simp]: "int_decode (int_encode x) = x" by (simp add: int_decode_def int_encode_def) lemma int_decode_inverse [simp]: "int_encode (int_decode n) = n" unfolding int_decode_def int_encode_def using sum_decode_inverse [of n] by (cases "sum_decode n") simp_all lemma inj_int_encode: "inj_on int_encode A" by (rule inj_on_inverseI) (rule int_encode_inverse) lemma inj_int_decode: "inj_on int_decode A" by (rule inj_on_inverseI) (rule int_decode_inverse) lemma surj_int_encode: "surj int_encode" by (rule surjI) (rule int_decode_inverse) lemma surj_int_decode: "surj int_decode" by (rule surjI) (rule int_encode_inverse) lemma bij_int_encode: "bij int_encode" by (rule bijI [OF inj_int_encode surj_int_encode]) lemma bij_int_decode: "bij int_decode" by (rule bijI [OF inj_int_decode surj_int_decode]) lemma int_encode_eq: "int_encode x = int_encode y \ x = y" by (rule inj_int_encode [THEN inj_eq]) lemma int_decode_eq: "int_decode x = int_decode y \ x = y" by (rule inj_int_decode [THEN inj_eq]) subsection \Type \<^typ>\nat list\\ fun list_encode :: "nat list \ nat" where "list_encode [] = 0" | "list_encode (x # xs) = Suc (prod_encode (x, list_encode xs))" function list_decode :: "nat \ nat list" where "list_decode 0 = []" | "list_decode (Suc n) = (case prod_decode n of (x, y) \ x # list_decode y)" by pat_completeness auto termination list_decode apply (relation "measure id") apply simp_all apply (drule arg_cong [where f="prod_encode"]) apply (drule sym) apply (simp add: le_imp_less_Suc le_prod_encode_2) done lemma list_encode_inverse [simp]: "list_decode (list_encode x) = x" by (induct x rule: list_encode.induct) simp_all lemma list_decode_inverse [simp]: "list_encode (list_decode n) = n" apply (induct n rule: list_decode.induct) apply simp apply (simp split: prod.split) apply (simp add: prod_decode_eq [symmetric]) done lemma inj_list_encode: "inj_on list_encode A" by (rule inj_on_inverseI) (rule list_encode_inverse) lemma inj_list_decode: "inj_on list_decode A" by (rule inj_on_inverseI) (rule list_decode_inverse) lemma surj_list_encode: "surj list_encode" by (rule surjI) (rule list_decode_inverse) lemma surj_list_decode: "surj list_decode" by (rule surjI) (rule list_encode_inverse) lemma bij_list_encode: "bij list_encode" by (rule bijI [OF inj_list_encode surj_list_encode]) lemma bij_list_decode: "bij list_decode" by (rule bijI [OF inj_list_decode surj_list_decode]) lemma list_encode_eq: "list_encode x = list_encode y \ x = y" by (rule inj_list_encode [THEN inj_eq]) lemma list_decode_eq: "list_decode x = list_decode y \ x = y" by (rule inj_list_decode [THEN inj_eq]) subsection \Finite sets of naturals\ subsubsection \Preliminaries\ lemma finite_vimage_Suc_iff: "finite (Suc -` F) \ finite F" apply (safe intro!: finite_vimageI inj_Suc) apply (rule finite_subset [where B="insert 0 (Suc ` Suc -` F)"]) apply (rule subsetI) apply (case_tac x) apply simp apply simp apply (rule finite_insert [THEN iffD2]) apply (erule finite_imageI) done lemma vimage_Suc_insert_0: "Suc -` insert 0 A = Suc -` A" by auto lemma vimage_Suc_insert_Suc: "Suc -` insert (Suc n) A = insert n (Suc -` A)" by auto lemma div2_even_ext_nat: fixes x y :: nat assumes "x div 2 = y div 2" and "even x \ even y" shows "x = y" proof - from \even x \ even y\ have "x mod 2 = y mod 2" by (simp only: even_iff_mod_2_eq_zero) auto with assms have "x div 2 * 2 + x mod 2 = y div 2 * 2 + y mod 2" by simp then show ?thesis by simp qed subsubsection \From sets to naturals\ definition set_encode :: "nat set \ nat" where "set_encode = sum ((^) 2)" lemma set_encode_empty [simp]: "set_encode {} = 0" by (simp add: set_encode_def) lemma set_encode_inf: "\ finite A \ set_encode A = 0" by (simp add: set_encode_def) lemma set_encode_insert [simp]: "finite A \ n \ A \ set_encode (insert n A) = 2^n + set_encode A" by (simp add: set_encode_def) lemma even_set_encode_iff: "finite A \ even (set_encode A) \ 0 \ A" by (induct set: finite) (auto simp: set_encode_def) lemma set_encode_vimage_Suc: "set_encode (Suc -` A) = set_encode A div 2" apply (cases "finite A") apply (erule finite_induct) apply simp apply (case_tac x) apply (simp add: even_set_encode_iff vimage_Suc_insert_0) apply (simp add: finite_vimageI add.commute vimage_Suc_insert_Suc) apply (simp add: set_encode_def finite_vimage_Suc_iff) done lemmas set_encode_div_2 = set_encode_vimage_Suc [symmetric] subsubsection \From naturals to sets\ definition set_decode :: "nat \ nat set" where "set_decode x = {n. odd (x div 2 ^ n)}" lemma set_decode_0 [simp]: "0 \ set_decode x \ odd x" by (simp add: set_decode_def) lemma set_decode_Suc [simp]: "Suc n \ set_decode x \ n \ set_decode (x div 2)" by (simp add: set_decode_def div_mult2_eq) lemma set_decode_zero [simp]: "set_decode 0 = {}" by (simp add: set_decode_def) lemma set_decode_div_2: "set_decode (x div 2) = Suc -` set_decode x" by auto lemma set_decode_plus_power_2: "n \ set_decode z \ set_decode (2 ^ n + z) = insert n (set_decode z)" proof (induct n arbitrary: z) case 0 show ?case proof (rule set_eqI) show "q \ set_decode (2 ^ 0 + z) \ q \ insert 0 (set_decode z)" for q by (induct q) (use 0 in simp_all) qed next case (Suc n) show ?case proof (rule set_eqI) show "q \ set_decode (2 ^ Suc n + z) \ q \ insert (Suc n) (set_decode z)" for q by (induct q) (use Suc in simp_all) qed qed lemma finite_set_decode [simp]: "finite (set_decode n)" apply (induct n rule: nat_less_induct) apply (case_tac "n = 0") apply simp apply (drule_tac x="n div 2" in spec) apply simp apply (simp add: set_decode_div_2) apply (simp add: finite_vimage_Suc_iff) done subsubsection \Proof of isomorphism\ lemma set_decode_inverse [simp]: "set_encode (set_decode n) = n" apply (induct n rule: nat_less_induct) apply (case_tac "n = 0") apply simp apply (drule_tac x="n div 2" in spec) apply simp apply (simp add: set_decode_div_2 set_encode_vimage_Suc) apply (erule div2_even_ext_nat) apply (simp add: even_set_encode_iff) done lemma set_encode_inverse [simp]: "finite A \ set_decode (set_encode A) = A" apply (erule finite_induct) apply simp_all apply (simp add: set_decode_plus_power_2) done lemma inj_on_set_encode: "inj_on set_encode (Collect finite)" by (rule inj_on_inverseI [where g = "set_decode"]) simp lemma set_encode_eq: "finite A \ finite B \ set_encode A = set_encode B \ A = B" by (rule iffI) (simp_all add: inj_onD [OF inj_on_set_encode]) lemma subset_decode_imp_le: assumes "set_decode m \ set_decode n" shows "m \ n" proof - have "n = m + set_encode (set_decode n - set_decode m)" proof - obtain A B where "m = set_encode A" "finite A" "n = set_encode B" "finite B" by (metis finite_set_decode set_decode_inverse) with assms show ?thesis by auto (simp add: set_encode_def add.commute sum.subset_diff) qed then show ?thesis by (metis le_add1) qed end