(* Title: HOL/HOLCF/IOA/ABP/Sender.thy Author: Olaf Müller *) section \The implementation: sender\ theory Sender imports IOA.IOA Action Lemmas begin type_synonym 'm sender_state = "'m list * bool" \ \messages, Alternating Bit\ definition sq :: "'m sender_state => 'm list" where "sq = fst" definition sbit :: "'m sender_state => bool" where "sbit = snd" definition sender_asig :: "'m action signature" where "sender_asig = ((UN m. {S_msg(m)}) Un (UN b. {R_ack(b)}), UN pkt. {S_pkt(pkt)}, {})" definition sender_trans :: "('m action, 'm sender_state)transition set" where "sender_trans = {tr. let s = fst(tr); t = snd(snd(tr)) in case fst(snd(tr)) of Next => if sq(s)=[] then t=s else False | S_msg(m) => sq(t)=sq(s)@[m] & sbit(t)=sbit(s) | R_msg(m) => False | S_pkt(pkt) => sq(s) ~= [] & hdr(pkt) = sbit(s) & msg(pkt) = hd(sq(s)) & sq(t) = sq(s) & sbit(t) = sbit(s) | R_pkt(pkt) => False | S_ack(b) => False | R_ack(b) => if b = sbit(s) then sq(t)=tl(sq(s)) & sbit(t)=(~sbit(s)) else sq(t)=sq(s) & sbit(t)=sbit(s)}" definition sender_ioa :: "('m action, 'm sender_state)ioa" where "sender_ioa = (sender_asig, {([],True)}, sender_trans,{},{})" end