(* Title: HOL/HOLCF/IOA/ABP/Correctness.thy Author: Olaf Müller *) section \The main correctness proof: System_fin implements System\ theory Correctness imports IOA.IOA Env Impl Impl_finite begin ML_file \Check.ML\ primrec reduce :: "'a list => 'a list" where reduce_Nil: "reduce [] = []" | reduce_Cons: "reduce(x#xs) = (case xs of [] => [x] | y#ys => (if (x=y) then reduce xs else (x#(reduce xs))))" definition abs where "abs = (%p.(fst(p),(fst(snd(p)),(fst(snd(snd(p))), (reduce(fst(snd(snd(snd(p))))),reduce(snd(snd(snd(snd(p))))))))))" definition system_ioa :: "('m action, bool * 'm impl_state)ioa" where "system_ioa = (env_ioa \ impl_ioa)" definition system_fin_ioa :: "('m action, bool * 'm impl_state)ioa" where "system_fin_ioa = (env_ioa \ impl_fin_ioa)" axiomatization where sys_IOA: "IOA system_ioa" and sys_fin_IOA: "IOA system_fin_ioa" declare split_paired_All [simp del] Collect_empty_eq [simp del] lemmas [simp] = srch_asig_def rsch_asig_def rsch_ioa_def srch_ioa_def ch_ioa_def ch_asig_def srch_actions_def rsch_actions_def rename_def rename_set_def asig_of_def actions_def exis_elim srch_trans_def rsch_trans_def ch_trans_def trans_of_def asig_projections set_lemmas lemmas abschannel_fin [simp] = srch_fin_asig_def rsch_fin_asig_def rsch_fin_ioa_def srch_fin_ioa_def ch_fin_ioa_def ch_fin_trans_def ch_fin_asig_def lemmas impl_ioas = sender_ioa_def receiver_ioa_def and impl_trans = sender_trans_def receiver_trans_def and impl_asigs = sender_asig_def receiver_asig_def declare let_weak_cong [cong] declare ioa_triple_proj [simp] starts_of_par [simp] lemmas env_ioas = env_ioa_def env_asig_def env_trans_def lemmas hom_ioas = env_ioas [simp] impl_ioas [simp] impl_trans [simp] impl_asigs [simp] asig_projections set_lemmas subsection \lemmas about reduce\ lemma l_iff_red_nil: "(reduce l = []) = (l = [])" by (induct l) (auto split: list.split) lemma hd_is_reduce_hd: "s ~= [] --> hd s = hd (reduce s)" by (induct s) (auto split: list.split) text \to be used in the following Lemma\ lemma rev_red_not_nil [rule_format]: "l ~= [] --> reverse (reduce l) ~= []" by (induct l) (auto split: list.split) text \shows applicability of the induction hypothesis of the following Lemma 1\ lemma last_ind_on_first: "l ~= [] ==> hd (reverse (reduce (a # l))) = hd (reverse (reduce l))" apply simp apply (tactic \auto_tac (put_simpset HOL_ss \<^context> addsimps (@{thms reverse.simps} @ [@{thm hd_append}, @{thm rev_red_not_nil}]) |> Splitter.add_split @{thm list.split})\) done text \Main Lemma 1 for \S_pkt\ in showing that reduce is refinement.\ lemma reduce_hd: "if x=hd(reverse(reduce(l))) & reduce(l)~=[] then reduce(l@[x])=reduce(l) else reduce(l@[x])=reduce(l)@[x]" apply (simplesubst if_split) apply (rule conjI) txt \\-->\\ apply (induct_tac "l") apply (simp (no_asm)) apply (case_tac "list=[]") apply simp apply (rule impI) apply (simp (no_asm)) apply (cut_tac l = "list" in cons_not_nil) apply (simp del: reduce_Cons) apply (erule exE)+ apply hypsubst apply (simp del: reduce_Cons add: last_ind_on_first l_iff_red_nil) txt \\<--\\ apply (simp (no_asm) add: and_de_morgan_and_absorbe l_iff_red_nil) apply (induct_tac "l") apply (simp (no_asm)) apply (case_tac "list=[]") apply (cut_tac [2] l = "list" in cons_not_nil) apply simp apply (auto simp del: reduce_Cons simp add: last_ind_on_first l_iff_red_nil split: if_split) apply simp done text \Main Lemma 2 for R_pkt in showing that reduce is refinement.\ lemma reduce_tl: "s~=[] ==> if hd(s)=hd(tl(s)) & tl(s)~=[] then reduce(tl(s))=reduce(s) else reduce(tl(s))=tl(reduce(s))" apply (cut_tac l = "s" in cons_not_nil) apply simp apply (erule exE)+ apply (auto split: list.split) done subsection \Channel Abstraction\ declare if_split [split del] lemma channel_abstraction: "is_weak_ref_map reduce ch_ioa ch_fin_ioa" apply (simp (no_asm) add: is_weak_ref_map_def) txt \main-part\ apply (rule allI)+ apply (rule imp_conj_lemma) apply (induct_tac "a") txt \2 cases\ apply (simp_all (no_asm) cong del: if_weak_cong add: externals_def) txt \fst case\ apply (rule impI) apply (rule disjI2) apply (rule reduce_hd) txt \snd case\ apply (rule impI) apply (erule conjE)+ apply (erule disjE) apply (simp add: l_iff_red_nil) apply (erule hd_is_reduce_hd [THEN mp]) apply (simp add: l_iff_red_nil) apply (rule conjI) apply (erule hd_is_reduce_hd [THEN mp]) apply (rule bool_if_impl_or [THEN mp]) apply (erule reduce_tl) done declare if_split [split] lemma sender_abstraction: "is_weak_ref_map reduce srch_ioa srch_fin_ioa" apply (tactic \ simp_tac (put_simpset HOL_ss \<^context> addsimps [@{thm srch_fin_ioa_def}, @{thm rsch_fin_ioa_def}, @{thm srch_ioa_def}, @{thm rsch_ioa_def}, @{thm rename_through_pmap}, @{thm channel_abstraction}]) 1\) done lemma receiver_abstraction: "is_weak_ref_map reduce rsch_ioa rsch_fin_ioa" apply (tactic \ simp_tac (put_simpset HOL_ss \<^context> addsimps [@{thm srch_fin_ioa_def}, @{thm rsch_fin_ioa_def}, @{thm srch_ioa_def}, @{thm rsch_ioa_def}, @{thm rename_through_pmap}, @{thm channel_abstraction}]) 1\) done text \3 thms that do not hold generally! The lucky restriction here is the absence of internal actions.\ lemma sender_unchanged: "is_weak_ref_map (%id. id) sender_ioa sender_ioa" apply (simp (no_asm) add: is_weak_ref_map_def) txt \main-part\ apply (rule allI)+ apply (induct_tac a) txt \7 cases\ apply (simp_all (no_asm) add: externals_def) done text \2 copies of before\ lemma receiver_unchanged: "is_weak_ref_map (%id. id) receiver_ioa receiver_ioa" apply (simp (no_asm) add: is_weak_ref_map_def) txt \main-part\ apply (rule allI)+ apply (induct_tac a) txt \7 cases\ apply (simp_all (no_asm) add: externals_def) done lemma env_unchanged: "is_weak_ref_map (%id. id) env_ioa env_ioa" apply (simp (no_asm) add: is_weak_ref_map_def) txt \main-part\ apply (rule allI)+ apply (induct_tac a) txt \7 cases\ apply (simp_all (no_asm) add: externals_def) done lemma compat_single_ch: "compatible srch_ioa rsch_ioa" apply (simp add: compatible_def Int_def) apply (rule set_eqI) apply (induct_tac x) apply simp_all done text \totally the same as before\ lemma compat_single_fin_ch: "compatible srch_fin_ioa rsch_fin_ioa" apply (simp add: compatible_def Int_def) apply (rule set_eqI) apply (induct_tac x) apply simp_all done lemmas del_simps = trans_of_def srch_asig_def rsch_asig_def asig_of_def actions_def srch_trans_def rsch_trans_def srch_ioa_def srch_fin_ioa_def rsch_fin_ioa_def rsch_ioa_def sender_trans_def receiver_trans_def set_lemmas lemma compat_rec: "compatible receiver_ioa (srch_ioa \ rsch_ioa)" apply (simp del: del_simps add: compatible_def asig_of_par asig_comp_def actions_def Int_def) apply simp apply (rule set_eqI) apply (induct_tac x) apply simp_all done text \5 proofs totally the same as before\ lemma compat_rec_fin: "compatible receiver_ioa (srch_fin_ioa \ rsch_fin_ioa)" apply (simp del: del_simps add: compatible_def asig_of_par asig_comp_def actions_def Int_def) apply simp apply (rule set_eqI) apply (induct_tac x) apply simp_all done lemma compat_sen: "compatible sender_ioa (receiver_ioa \ srch_ioa \ rsch_ioa)" apply (simp del: del_simps add: compatible_def asig_of_par asig_comp_def actions_def Int_def) apply simp apply (rule set_eqI) apply (induct_tac x) apply simp_all done lemma compat_sen_fin: "compatible sender_ioa (receiver_ioa \ srch_fin_ioa \ rsch_fin_ioa)" apply (simp del: del_simps add: compatible_def asig_of_par asig_comp_def actions_def Int_def) apply simp apply (rule set_eqI) apply (induct_tac x) apply simp_all done lemma compat_env: "compatible env_ioa (sender_ioa \ receiver_ioa \ srch_ioa \ rsch_ioa)" apply (simp del: del_simps add: compatible_def asig_of_par asig_comp_def actions_def Int_def) apply simp apply (rule set_eqI) apply (induct_tac x) apply simp_all done lemma compat_env_fin: "compatible env_ioa (sender_ioa \ receiver_ioa \ srch_fin_ioa \ rsch_fin_ioa)" apply (simp del: del_simps add: compatible_def asig_of_par asig_comp_def actions_def Int_def) apply simp apply (rule set_eqI) apply (induct_tac x) apply simp_all done text \lemmata about externals of channels\ lemma ext_single_ch: "externals(asig_of(srch_fin_ioa)) = externals(asig_of(srch_ioa)) & externals(asig_of(rsch_fin_ioa)) = externals(asig_of(rsch_ioa))" by (simp add: externals_def) subsection \Soundness of Abstraction\ lemmas ext_simps = externals_of_par ext_single_ch and compat_simps = compat_single_ch compat_single_fin_ch compat_rec compat_rec_fin compat_sen compat_sen_fin compat_env compat_env_fin and abstractions = env_unchanged sender_unchanged receiver_unchanged sender_abstraction receiver_abstraction (* FIX: this proof should be done with compositionality on trace level, not on weak_ref_map level, as done here with fxg_is_weak_ref_map_of_product_IOA Goal "is_weak_ref_map abs system_ioa system_fin_ioa" by (simp_tac (impl_ss delsimps ([srch_ioa_def, rsch_ioa_def, srch_fin_ioa_def, rsch_fin_ioa_def] @ env_ioas @ impl_ioas) addsimps [system_def, system_fin_def, abs_def, impl_ioa_def, impl_fin_ioa_def, sys_IOA, sys_fin_IOA]) 1); by (REPEAT (EVERY[rtac fxg_is_weak_ref_map_of_product_IOA 1, simp_tac (ss addsimps abstractions) 1, rtac conjI 1])); by (ALLGOALS (simp_tac (ss addsimps ext_ss @ compat_ss))); qed "system_refinement"; *) end