(* Title: HOL/HOLCF/IMP/Denotational.thy Author: Tobias Nipkow and Robert Sandner, TUM Copyright 1996 TUM *) section "Denotational Semantics of Commands in HOLCF" theory Denotational imports HOLCF "HOL-IMP.Big_Step" begin subsection "Definition" definition dlift :: "(('a::type) discr -> 'b::pcpo) => ('a lift -> 'b)" where "dlift f = (LAM x. case x of UU \ UU | Def y \ f\(Discr y))" primrec D :: "com \ state discr \ state lift" where "D(SKIP) = (LAM s. Def(undiscr s))" | "D(X ::= a) = (LAM s. Def((undiscr s)(X := aval a (undiscr s))))" | "D(c0 ;; c1) = (dlift(D c1) oo (D c0))" | "D(IF b THEN c1 ELSE c2) = (LAM s. if bval b (undiscr s) then (D c1)\s else (D c2)\s)" | "D(WHILE b DO c) = fix\(LAM w s. if bval b (undiscr s) then (dlift w)\((D c)\s) else Def(undiscr s))" subsection "Equivalence of Denotational Semantics in HOLCF and Evaluation Semantics in HOL" lemma dlift_Def [simp]: "dlift f\(Def x) = f\(Discr x)" by (simp add: dlift_def) lemma cont_dlift [iff]: "cont (%f. dlift f)" by (simp add: dlift_def) lemma dlift_is_Def [simp]: "(dlift f\l = Def y) = (\x. l = Def x \ f\(Discr x) = Def y)" by (simp add: dlift_def split: lift.split) lemma eval_implies_D: "(c,s) \ t \ D c\(Discr s) = (Def t)" apply (induct rule: big_step_induct) apply (auto) apply (subst fix_eq) apply simp apply (subst fix_eq) apply simp done lemma D_implies_eval: "\s t. D c\(Discr s) = (Def t) \ (c,s) \ t" apply (induct c) apply fastforce apply fastforce apply force apply (simp (no_asm)) apply force apply (simp (no_asm)) apply (rule fix_ind) apply (fast intro!: adm_lemmas adm_chfindom ax_flat) apply (simp (no_asm)) apply (simp (no_asm)) apply force done theorem D_is_eval: "(D c\(Discr s) = (Def t)) = ((c,s) \ t)" by (fast elim!: D_implies_eval [rule_format] eval_implies_D) end