(* Title: HOL/Fun.thy Author: Tobias Nipkow, Cambridge University Computer Laboratory Author: Andrei Popescu, TU Muenchen Copyright 1994, 2012 *) section \Notions about functions\ theory Fun imports Set keywords "functor" :: thy_goal_defn begin lemma apply_inverse: "f x = u \ (\x. P x \ g (f x) = x) \ P x \ x = g u" by auto text \Uniqueness, so NOT the axiom of choice.\ lemma uniq_choice: "\x. \!y. Q x y \ \f. \x. Q x (f x)" by (force intro: theI') lemma b_uniq_choice: "\x\S. \!y. Q x y \ \f. \x\S. Q x (f x)" by (force intro: theI') subsection \The Identity Function \id\\ definition id :: "'a \ 'a" where "id = (\x. x)" lemma id_apply [simp]: "id x = x" by (simp add: id_def) lemma image_id [simp]: "image id = id" by (simp add: id_def fun_eq_iff) lemma vimage_id [simp]: "vimage id = id" by (simp add: id_def fun_eq_iff) lemma eq_id_iff: "(\x. f x = x) \ f = id" by auto code_printing constant id \ (Haskell) "id" subsection \The Composition Operator \f \ g\\ definition comp :: "('b \ 'c) \ ('a \ 'b) \ 'a \ 'c" (infixl "\" 55) where "f \ g = (\x. f (g x))" notation (ASCII) comp (infixl "o" 55) lemma comp_apply [simp]: "(f \ g) x = f (g x)" by (simp add: comp_def) lemma comp_assoc: "(f \ g) \ h = f \ (g \ h)" by (simp add: fun_eq_iff) lemma id_comp [simp]: "id \ g = g" by (simp add: fun_eq_iff) lemma comp_id [simp]: "f \ id = f" by (simp add: fun_eq_iff) lemma comp_eq_dest: "a \ b = c \ d \ a (b v) = c (d v)" by (simp add: fun_eq_iff) lemma comp_eq_elim: "a \ b = c \ d \ ((\v. a (b v) = c (d v)) \ R) \ R" by (simp add: fun_eq_iff) lemma comp_eq_dest_lhs: "a \ b = c \ a (b v) = c v" by clarsimp lemma comp_eq_id_dest: "a \ b = id \ c \ a (b v) = c v" by clarsimp lemma image_comp: "f ` (g ` r) = (f \ g) ` r" by auto lemma vimage_comp: "f -` (g -` x) = (g \ f) -` x" by auto lemma image_eq_imp_comp: "f ` A = g ` B \ (h \ f) ` A = (h \ g) ` B" by (auto simp: comp_def elim!: equalityE) lemma image_bind: "f ` (Set.bind A g) = Set.bind A ((`) f \ g)" by (auto simp add: Set.bind_def) lemma bind_image: "Set.bind (f ` A) g = Set.bind A (g \ f)" by (auto simp add: Set.bind_def) lemma (in group_add) minus_comp_minus [simp]: "uminus \ uminus = id" by (simp add: fun_eq_iff) lemma (in boolean_algebra) minus_comp_minus [simp]: "uminus \ uminus = id" by (simp add: fun_eq_iff) code_printing constant comp \ (SML) infixl 5 "o" and (Haskell) infixr 9 "." subsection \The Forward Composition Operator \fcomp\\ definition fcomp :: "('a \ 'b) \ ('b \ 'c) \ 'a \ 'c" (infixl "\>" 60) where "f \> g = (\x. g (f x))" lemma fcomp_apply [simp]: "(f \> g) x = g (f x)" by (simp add: fcomp_def) lemma fcomp_assoc: "(f \> g) \> h = f \> (g \> h)" by (simp add: fcomp_def) lemma id_fcomp [simp]: "id \> g = g" by (simp add: fcomp_def) lemma fcomp_id [simp]: "f \> id = f" by (simp add: fcomp_def) lemma fcomp_comp: "fcomp f g = comp g f" by (simp add: ext) code_printing constant fcomp \ (Eval) infixl 1 "#>" no_notation fcomp (infixl "\>" 60) subsection \Mapping functions\ definition map_fun :: "('c \ 'a) \ ('b \ 'd) \ ('a \ 'b) \ 'c \ 'd" where "map_fun f g h = g \ h \ f" lemma map_fun_apply [simp]: "map_fun f g h x = g (h (f x))" by (simp add: map_fun_def) subsection \Injectivity and Bijectivity\ definition inj_on :: "('a \ 'b) \ 'a set \ bool" \ \injective\ where "inj_on f A \ (\x\A. \y\A. f x = f y \ x = y)" definition bij_betw :: "('a \ 'b) \ 'a set \ 'b set \ bool" \ \bijective\ where "bij_betw f A B \ inj_on f A \ f ` A = B" text \ A common special case: functions injective, surjective or bijective over the entire domain type. \ abbreviation inj :: "('a \ 'b) \ bool" where "inj f \ inj_on f UNIV" abbreviation surj :: "('a \ 'b) \ bool" where "surj f \ range f = UNIV" translations \ \The negated case:\ "\ CONST surj f" \ "CONST range f \ CONST UNIV" abbreviation bij :: "('a \ 'b) \ bool" where "bij f \ bij_betw f UNIV UNIV" lemma inj_def: "inj f \ (\x y. f x = f y \ x = y)" unfolding inj_on_def by blast lemma injI: "(\x y. f x = f y \ x = y) \ inj f" unfolding inj_def by blast theorem range_ex1_eq: "inj f \ b \ range f \ (\!x. b = f x)" unfolding inj_def by blast lemma injD: "inj f \ f x = f y \ x = y" by (simp add: inj_def) lemma inj_on_eq_iff: "inj_on f A \ x \ A \ y \ A \ f x = f y \ x = y" by (auto simp: inj_on_def) lemma inj_on_cong: "(\a. a \ A \ f a = g a) \ inj_on f A \ inj_on g A" by (auto simp: inj_on_def) lemma inj_on_strict_subset: "inj_on f B \ A \ B \ f ` A \ f ` B" unfolding inj_on_def by blast lemma inj_compose: "inj f \ inj g \ inj (f \ g)" by (simp add: inj_def) lemma inj_fun: "inj f \ inj (\x y. f x)" by (simp add: inj_def fun_eq_iff) lemma inj_eq: "inj f \ f x = f y \ x = y" by (simp add: inj_on_eq_iff) lemma inj_on_id[simp]: "inj_on id A" by (simp add: inj_on_def) lemma inj_on_id2[simp]: "inj_on (\x. x) A" by (simp add: inj_on_def) lemma inj_on_Int: "inj_on f A \ inj_on f B \ inj_on f (A \ B)" unfolding inj_on_def by blast lemma surj_id: "surj id" by simp lemma bij_id[simp]: "bij id" by (simp add: bij_betw_def) lemma bij_uminus: "bij (uminus :: 'a \ 'a::ab_group_add)" unfolding bij_betw_def inj_on_def by (force intro: minus_minus [symmetric]) lemma inj_onI [intro?]: "(\x y. x \ A \ y \ A \ f x = f y \ x = y) \ inj_on f A" by (simp add: inj_on_def) lemma inj_on_inverseI: "(\x. x \ A \ g (f x) = x) \ inj_on f A" by (auto dest: arg_cong [of concl: g] simp add: inj_on_def) lemma inj_onD: "inj_on f A \ f x = f y \ x \ A \ y \ A \ x = y" unfolding inj_on_def by blast lemma inj_on_subset: assumes "inj_on f A" and "B \ A" shows "inj_on f B" proof (rule inj_onI) fix a b assume "a \ B" and "b \ B" with assms have "a \ A" and "b \ A" by auto moreover assume "f a = f b" ultimately show "a = b" using assms by (auto dest: inj_onD) qed lemma comp_inj_on: "inj_on f A \ inj_on g (f ` A) \ inj_on (g \ f) A" by (simp add: comp_def inj_on_def) lemma inj_on_imageI: "inj_on (g \ f) A \ inj_on g (f ` A)" by (auto simp add: inj_on_def) lemma inj_on_image_iff: "\x\A. \y\A. g (f x) = g (f y) \ g x = g y \ inj_on f A \ inj_on g (f ` A) \ inj_on g A" unfolding inj_on_def by blast lemma inj_on_contraD: "inj_on f A \ x \ y \ x \ A \ y \ A \ f x \ f y" unfolding inj_on_def by blast lemma inj_singleton [simp]: "inj_on (\x. {x}) A" by (simp add: inj_on_def) lemma inj_on_empty[iff]: "inj_on f {}" by (simp add: inj_on_def) lemma subset_inj_on: "inj_on f B \ A \ B \ inj_on f A" unfolding inj_on_def by blast lemma inj_on_Un: "inj_on f (A \ B) \ inj_on f A \ inj_on f B \ f ` (A - B) \ f ` (B - A) = {}" unfolding inj_on_def by (blast intro: sym) lemma inj_on_insert [iff]: "inj_on f (insert a A) \ inj_on f A \ f a \ f ` (A - {a})" unfolding inj_on_def by (blast intro: sym) lemma inj_on_diff: "inj_on f A \ inj_on f (A - B)" unfolding inj_on_def by blast lemma comp_inj_on_iff: "inj_on f A \ inj_on f' (f ` A) \ inj_on (f' \ f) A" by (auto simp: comp_inj_on inj_on_def) lemma inj_on_imageI2: "inj_on (f' \ f) A \ inj_on f A" by (auto simp: comp_inj_on inj_on_def) lemma inj_img_insertE: assumes "inj_on f A" assumes "x \ B" and "insert x B = f ` A" obtains x' A' where "x' \ A'" and "A = insert x' A'" and "x = f x'" and "B = f ` A'" proof - from assms have "x \ f ` A" by auto then obtain x' where *: "x' \ A" "x = f x'" by auto then have A: "A = insert x' (A - {x'})" by auto with assms * have B: "B = f ` (A - {x'})" by (auto dest: inj_on_contraD) have "x' \ A - {x'}" by simp from this A \x = f x'\ B show ?thesis .. qed lemma linorder_inj_onI: fixes A :: "'a::order set" assumes ne: "\x y. \x < y; x\A; y\A\ \ f x \ f y" and lin: "\x y. \x\A; y\A\ \ x\y \ y\x" shows "inj_on f A" proof (rule inj_onI) fix x y assume eq: "f x = f y" and "x\A" "y\A" then show "x = y" using lin [of x y] ne by (force simp: dual_order.order_iff_strict) qed lemma linorder_injI: assumes "\x y::'a::linorder. x < y \ f x \ f y" shows "inj f" \ \Courtesy of Stephan Merz\ using assms by (auto intro: linorder_inj_onI linear) lemma inj_on_image_Pow: "inj_on f A \inj_on (image f) (Pow A)" unfolding Pow_def inj_on_def by blast lemma bij_betw_image_Pow: "bij_betw f A B \ bij_betw (image f) (Pow A) (Pow B)" by (auto simp add: bij_betw_def inj_on_image_Pow image_Pow_surj) lemma surj_def: "surj f \ (\y. \x. y = f x)" by auto lemma surjI: assumes "\x. g (f x) = x" shows "surj g" using assms [symmetric] by auto lemma surjD: "surj f \ \x. y = f x" by (simp add: surj_def) lemma surjE: "surj f \ (\x. y = f x \ C) \ C" by (simp add: surj_def) blast lemma comp_surj: "surj f \ surj g \ surj (g \ f)" using image_comp [of g f UNIV] by simp lemma bij_betw_imageI: "inj_on f A \ f ` A = B \ bij_betw f A B" unfolding bij_betw_def by clarify lemma bij_betw_imp_surj_on: "bij_betw f A B \ f ` A = B" unfolding bij_betw_def by clarify lemma bij_betw_imp_surj: "bij_betw f A UNIV \ surj f" unfolding bij_betw_def by auto lemma bij_betw_empty1: "bij_betw f {} A \ A = {}" unfolding bij_betw_def by blast lemma bij_betw_empty2: "bij_betw f A {} \ A = {}" unfolding bij_betw_def by blast lemma inj_on_imp_bij_betw: "inj_on f A \ bij_betw f A (f ` A)" unfolding bij_betw_def by simp lemma bij_betw_apply: "\bij_betw f A B; a \ A\ \ f a \ B" unfolding bij_betw_def by auto lemma bij_def: "bij f \ inj f \ surj f" by (rule bij_betw_def) lemma bijI: "inj f \ surj f \ bij f" by (rule bij_betw_imageI) lemma bij_is_inj: "bij f \ inj f" by (simp add: bij_def) lemma bij_is_surj: "bij f \ surj f" by (simp add: bij_def) lemma bij_betw_imp_inj_on: "bij_betw f A B \ inj_on f A" by (simp add: bij_betw_def) lemma bij_betw_trans: "bij_betw f A B \ bij_betw g B C \ bij_betw (g \ f) A C" by (auto simp add:bij_betw_def comp_inj_on) lemma bij_comp: "bij f \ bij g \ bij (g \ f)" by (rule bij_betw_trans) lemma bij_betw_comp_iff: "bij_betw f A A' \ bij_betw f' A' A'' \ bij_betw (f' \ f) A A''" by (auto simp add: bij_betw_def inj_on_def) lemma bij_betw_comp_iff2: assumes bij: "bij_betw f' A' A''" and img: "f ` A \ A'" shows "bij_betw f A A' \ bij_betw (f' \ f) A A''" using assms proof (auto simp add: bij_betw_comp_iff) assume *: "bij_betw (f' \ f) A A''" then show "bij_betw f A A'" using img proof (auto simp add: bij_betw_def) assume "inj_on (f' \ f) A" then show "inj_on f A" using inj_on_imageI2 by blast next fix a' assume **: "a' \ A'" with bij have "f' a' \ A''" unfolding bij_betw_def by auto with * obtain a where 1: "a \ A \ f' (f a) = f' a'" unfolding bij_betw_def by force with img have "f a \ A'" by auto with bij ** 1 have "f a = a'" unfolding bij_betw_def inj_on_def by auto with 1 show "a' \ f ` A" by auto qed qed lemma bij_betw_inv: assumes "bij_betw f A B" shows "\g. bij_betw g B A" proof - have i: "inj_on f A" and s: "f ` A = B" using assms by (auto simp: bij_betw_def) let ?P = "\b a. a \ A \ f a = b" let ?g = "\b. The (?P b)" have g: "?g b = a" if P: "?P b a" for a b proof - from that s have ex1: "\a. ?P b a" by blast then have uex1: "\!a. ?P b a" by (blast dest:inj_onD[OF i]) then show ?thesis using the1_equality[OF uex1, OF P] P by simp qed have "inj_on ?g B" proof (rule inj_onI) fix x y assume "x \ B" "y \ B" "?g x = ?g y" from s \x \ B\ obtain a1 where a1: "?P x a1" by blast from s \y \ B\ obtain a2 where a2: "?P y a2" by blast from g [OF a1] a1 g [OF a2] a2 \?g x = ?g y\ show "x = y" by simp qed moreover have "?g ` B = A" proof (auto simp: image_def) fix b assume "b \ B" with s obtain a where P: "?P b a" by blast with g[OF P] show "?g b \ A" by auto next fix a assume "a \ A" with s obtain b where P: "?P b a" by blast with s have "b \ B" by blast with g[OF P] show "\b\B. a = ?g b" by blast qed ultimately show ?thesis by (auto simp: bij_betw_def) qed lemma bij_betw_cong: "(\a. a \ A \ f a = g a) \ bij_betw f A A' = bij_betw g A A'" unfolding bij_betw_def inj_on_def by safe force+ (* somewhat slow *) lemma bij_betw_id[intro, simp]: "bij_betw id A A" unfolding bij_betw_def id_def by auto lemma bij_betw_id_iff: "bij_betw id A B \ A = B" by (auto simp add: bij_betw_def) lemma bij_betw_combine: "bij_betw f A B \ bij_betw f C D \ B \ D = {} \ bij_betw f (A \ C) (B \ D)" unfolding bij_betw_def inj_on_Un image_Un by auto lemma bij_betw_subset: "bij_betw f A A' \ B \ A \ f ` B = B' \ bij_betw f B B'" by (auto simp add: bij_betw_def inj_on_def) lemma bij_pointE: assumes "bij f" obtains x where "y = f x" and "\x'. y = f x' \ x' = x" proof - from assms have "inj f" by (rule bij_is_inj) moreover from assms have "surj f" by (rule bij_is_surj) then have "y \ range f" by simp ultimately have "\!x. y = f x" by (simp add: range_ex1_eq) with that show thesis by blast qed lemma surj_image_vimage_eq: "surj f \ f ` (f -` A) = A" by simp lemma surj_vimage_empty: assumes "surj f" shows "f -` A = {} \ A = {}" using surj_image_vimage_eq [OF \surj f\, of A] by (intro iffI) fastforce+ lemma inj_vimage_image_eq: "inj f \ f -` (f ` A) = A" unfolding inj_def by blast lemma vimage_subsetD: "surj f \ f -` B \ A \ B \ f ` A" by (blast intro: sym) lemma vimage_subsetI: "inj f \ B \ f ` A \ f -` B \ A" unfolding inj_def by blast lemma vimage_subset_eq: "bij f \ f -` B \ A \ B \ f ` A" unfolding bij_def by (blast del: subsetI intro: vimage_subsetI vimage_subsetD) lemma inj_on_image_eq_iff: "inj_on f C \ A \ C \ B \ C \ f ` A = f ` B \ A = B" by (fastforce simp: inj_on_def) lemma inj_on_Un_image_eq_iff: "inj_on f (A \ B) \ f ` A = f ` B \ A = B" by (erule inj_on_image_eq_iff) simp_all lemma inj_on_image_Int: "inj_on f C \ A \ C \ B \ C \ f ` (A \ B) = f ` A \ f ` B" unfolding inj_on_def by blast lemma inj_on_image_set_diff: "inj_on f C \ A - B \ C \ B \ C \ f ` (A - B) = f ` A - f ` B" unfolding inj_on_def by blast lemma image_Int: "inj f \ f ` (A \ B) = f ` A \ f ` B" unfolding inj_def by blast lemma image_set_diff: "inj f \ f ` (A - B) = f ` A - f ` B" unfolding inj_def by blast lemma inj_on_image_mem_iff: "inj_on f B \ a \ B \ A \ B \ f a \ f ` A \ a \ A" by (auto simp: inj_on_def) (*FIXME DELETE*) lemma inj_on_image_mem_iff_alt: "inj_on f B \ A \ B \ f a \ f ` A \ a \ B \ a \ A" by (blast dest: inj_onD) lemma inj_image_mem_iff: "inj f \ f a \ f ` A \ a \ A" by (blast dest: injD) lemma inj_image_subset_iff: "inj f \ f ` A \ f ` B \ A \ B" by (blast dest: injD) lemma inj_image_eq_iff: "inj f \ f ` A = f ` B \ A = B" by (blast dest: injD) lemma surj_Compl_image_subset: "surj f \ - (f ` A) \ f ` (- A)" by auto lemma inj_image_Compl_subset: "inj f \ f ` (- A) \ - (f ` A)" by (auto simp: inj_def) lemma bij_image_Compl_eq: "bij f \ f ` (- A) = - (f ` A)" by (simp add: bij_def inj_image_Compl_subset surj_Compl_image_subset equalityI) lemma inj_vimage_singleton: "inj f \ f -` {a} \ {THE x. f x = a}" \ \The inverse image of a singleton under an injective function is included in a singleton.\ by (simp add: inj_def) (blast intro: the_equality [symmetric]) lemma inj_on_vimage_singleton: "inj_on f A \ f -` {a} \ A \ {THE x. x \ A \ f x = a}" by (auto simp add: inj_on_def intro: the_equality [symmetric]) lemma (in ordered_ab_group_add) inj_uminus[simp, intro]: "inj_on uminus A" by (auto intro!: inj_onI) lemma (in linorder) strict_mono_imp_inj_on: "strict_mono f \ inj_on f A" by (auto intro!: inj_onI dest: strict_mono_eq) lemma bij_betw_byWitness: assumes left: "\a \ A. f' (f a) = a" and right: "\a' \ A'. f (f' a') = a'" and "f ` A \ A'" and img2: "f' ` A' \ A" shows "bij_betw f A A'" using assms unfolding bij_betw_def inj_on_def proof safe fix a b assume "a \ A" "b \ A" with left have "a = f' (f a) \ b = f' (f b)" by simp moreover assume "f a = f b" ultimately show "a = b" by simp next fix a' assume *: "a' \ A'" with img2 have "f' a' \ A" by blast moreover from * right have "a' = f (f' a')" by simp ultimately show "a' \ f ` A" by blast qed corollary notIn_Un_bij_betw: assumes "b \ A" and "f b \ A'" and "bij_betw f A A'" shows "bij_betw f (A \ {b}) (A' \ {f b})" proof - have "bij_betw f {b} {f b}" unfolding bij_betw_def inj_on_def by simp with assms show ?thesis using bij_betw_combine[of f A A' "{b}" "{f b}"] by blast qed lemma notIn_Un_bij_betw3: assumes "b \ A" and "f b \ A'" shows "bij_betw f A A' = bij_betw f (A \ {b}) (A' \ {f b})" proof assume "bij_betw f A A'" then show "bij_betw f (A \ {b}) (A' \ {f b})" using assms notIn_Un_bij_betw [of b A f A'] by blast next assume *: "bij_betw f (A \ {b}) (A' \ {f b})" have "f ` A = A'" proof auto fix a assume **: "a \ A" then have "f a \ A' \ {f b}" using * unfolding bij_betw_def by blast moreover have False if "f a = f b" proof - have "a = b" using * ** that unfolding bij_betw_def inj_on_def by blast with \b \ A\ ** show ?thesis by blast qed ultimately show "f a \ A'" by blast next fix a' assume **: "a' \ A'" then have "a' \ f ` (A \ {b})" using * by (auto simp add: bij_betw_def) then obtain a where 1: "a \ A \ {b} \ f a = a'" by blast moreover have False if "a = b" using 1 ** \f b \ A'\ that by blast ultimately have "a \ A" by blast with 1 show "a' \ f ` A" by blast qed then show "bij_betw f A A'" using * bij_betw_subset[of f "A \ {b}" _ A] by blast qed text \Important examples\ context cancel_semigroup_add begin lemma inj_on_add [simp]: "inj_on ((+) a) A" by (rule inj_onI) simp lemma inj_add_left: \inj ((+) a)\ by simp lemma inj_on_add' [simp]: "inj_on (\b. b + a) A" by (rule inj_onI) simp lemma bij_betw_add [simp]: "bij_betw ((+) a) A B \ (+) a ` A = B" by (simp add: bij_betw_def) end context ab_group_add begin lemma surj_plus [simp]: "surj ((+) a)" by (auto intro!: range_eqI [of b "(+) a" "b - a" for b]) (simp add: algebra_simps) lemma inj_diff_right [simp]: \inj (\b. b - a)\ proof - have \inj ((+) (- a))\ by (fact inj_add_left) also have \(+) (- a) = (\b. b - a)\ by (simp add: fun_eq_iff) finally show ?thesis . qed lemma surj_diff_right [simp]: "surj (\x. x - a)" using surj_plus [of "- a"] by (simp cong: image_cong_simp) lemma translation_Compl: "(+) a ` (- t) = - ((+) a ` t)" proof (rule set_eqI) fix b show "b \ (+) a ` (- t) \ b \ - (+) a ` t" by (auto simp: image_iff algebra_simps intro!: bexI [of _ "b - a"]) qed lemma translation_subtract_Compl: "(\x. x - a) ` (- t) = - ((\x. x - a) ` t)" using translation_Compl [of "- a" t] by (simp cong: image_cong_simp) lemma translation_diff: "(+) a ` (s - t) = ((+) a ` s) - ((+) a ` t)" by auto lemma translation_subtract_diff: "(\x. x - a) ` (s - t) = ((\x. x - a) ` s) - ((\x. x - a) ` t)" using translation_diff [of "- a"] by (simp cong: image_cong_simp) lemma translation_Int: "(+) a ` (s \ t) = ((+) a ` s) \ ((+) a ` t)" by auto lemma translation_subtract_Int: "(\x. x - a) ` (s \ t) = ((\x. x - a) ` s) \ ((\x. x - a) ` t)" using translation_Int [of " -a"] by (simp cong: image_cong_simp) end subsection \Function Updating\ definition fun_upd :: "('a \ 'b) \ 'a \ 'b \ ('a \ 'b)" where "fun_upd f a b = (\x. if x = a then b else f x)" nonterminal updbinds and updbind syntax "_updbind" :: "'a \ 'a \ updbind" ("(2_ :=/ _)") "" :: "updbind \ updbinds" ("_") "_updbinds":: "updbind \ updbinds \ updbinds" ("_,/ _") "_Update" :: "'a \ updbinds \ 'a" ("_/'((_)')" [1000, 0] 900) translations "_Update f (_updbinds b bs)" \ "_Update (_Update f b) bs" "f(x:=y)" \ "CONST fun_upd f x y" (* Hint: to define the sum of two functions (or maps), use case_sum. A nice infix syntax could be defined by notation case_sum (infixr "'(+')"80) *) lemma fun_upd_idem_iff: "f(x:=y) = f \ f x = y" unfolding fun_upd_def apply safe apply (erule subst) apply (rule_tac [2] ext) apply auto done lemma fun_upd_idem: "f x = y \ f(x := y) = f" by (simp only: fun_upd_idem_iff) lemma fun_upd_triv [iff]: "f(x := f x) = f" by (simp only: fun_upd_idem) lemma fun_upd_apply [simp]: "(f(x := y)) z = (if z = x then y else f z)" by (simp add: fun_upd_def) (* fun_upd_apply supersedes these two, but they are useful if fun_upd_apply is intentionally removed from the simpset *) lemma fun_upd_same: "(f(x := y)) x = y" by simp lemma fun_upd_other: "z \ x \ (f(x := y)) z = f z" by simp lemma fun_upd_upd [simp]: "f(x := y, x := z) = f(x := z)" by (simp add: fun_eq_iff) lemma fun_upd_twist: "a \ c \ (m(a := b))(c := d) = (m(c := d))(a := b)" by (rule ext) auto lemma inj_on_fun_updI: "inj_on f A \ y \ f ` A \ inj_on (f(x := y)) A" by (auto simp: inj_on_def) lemma fun_upd_image: "f(x := y) ` A = (if x \ A then insert y (f ` (A - {x})) else f ` A)" by auto lemma fun_upd_comp: "f \ (g(x := y)) = (f \ g)(x := f y)" by auto lemma fun_upd_eqD: "f(x := y) = g(x := z) \ y = z" by (simp add: fun_eq_iff split: if_split_asm) subsection \\override_on\\ definition override_on :: "('a \ 'b) \ ('a \ 'b) \ 'a set \ 'a \ 'b" where "override_on f g A = (\a. if a \ A then g a else f a)" lemma override_on_emptyset[simp]: "override_on f g {} = f" by (simp add: override_on_def) lemma override_on_apply_notin[simp]: "a \ A \ (override_on f g A) a = f a" by (simp add: override_on_def) lemma override_on_apply_in[simp]: "a \ A \ (override_on f g A) a = g a" by (simp add: override_on_def) lemma override_on_insert: "override_on f g (insert x X) = (override_on f g X)(x:=g x)" by (simp add: override_on_def fun_eq_iff) lemma override_on_insert': "override_on f g (insert x X) = (override_on (f(x:=g x)) g X)" by (simp add: override_on_def fun_eq_iff) subsection \\swap\\ definition swap :: "'a \ 'a \ ('a \ 'b) \ ('a \ 'b)" where "swap a b f = f (a := f b, b:= f a)" lemma swap_apply [simp]: "swap a b f a = f b" "swap a b f b = f a" "c \ a \ c \ b \ swap a b f c = f c" by (simp_all add: swap_def) lemma swap_self [simp]: "swap a a f = f" by (simp add: swap_def) lemma swap_commute: "swap a b f = swap b a f" by (simp add: fun_upd_def swap_def fun_eq_iff) lemma swap_nilpotent [simp]: "swap a b (swap a b f) = f" by (rule ext) (simp add: fun_upd_def swap_def) lemma swap_comp_involutory [simp]: "swap a b \ swap a b = id" by (rule ext) simp lemma swap_triple: assumes "a \ c" and "b \ c" shows "swap a b (swap b c (swap a b f)) = swap a c f" using assms by (simp add: fun_eq_iff swap_def) lemma comp_swap: "f \ swap a b g = swap a b (f \ g)" by (rule ext) (simp add: fun_upd_def swap_def) lemma swap_image_eq [simp]: assumes "a \ A" "b \ A" shows "swap a b f ` A = f ` A" proof - have subset: "\f. swap a b f ` A \ f ` A" using assms by (auto simp: image_iff swap_def) then have "swap a b (swap a b f) ` A \ (swap a b f) ` A" . with subset[of f] show ?thesis by auto qed lemma inj_on_imp_inj_on_swap: "inj_on f A \ a \ A \ b \ A \ inj_on (swap a b f) A" by (auto simp add: inj_on_def swap_def) lemma inj_on_swap_iff [simp]: assumes A: "a \ A" "b \ A" shows "inj_on (swap a b f) A \ inj_on f A" proof assume "inj_on (swap a b f) A" with A have "inj_on (swap a b (swap a b f)) A" by (iprover intro: inj_on_imp_inj_on_swap) then show "inj_on f A" by simp next assume "inj_on f A" with A show "inj_on (swap a b f) A" by (iprover intro: inj_on_imp_inj_on_swap) qed lemma surj_imp_surj_swap: "surj f \ surj (swap a b f)" by simp lemma surj_swap_iff [simp]: "surj (swap a b f) \ surj f" by simp lemma bij_betw_swap_iff [simp]: "x \ A \ y \ A \ bij_betw (swap x y f) A B \ bij_betw f A B" by (auto simp: bij_betw_def) lemma bij_swap_iff [simp]: "bij (swap a b f) \ bij f" by simp hide_const (open) swap subsection \Inversion of injective functions\ definition the_inv_into :: "'a set \ ('a \ 'b) \ ('b \ 'a)" where "the_inv_into A f = (\x. THE y. y \ A \ f y = x)" lemma the_inv_into_f_f: "inj_on f A \ x \ A \ the_inv_into A f (f x) = x" unfolding the_inv_into_def inj_on_def by blast lemma f_the_inv_into_f: "inj_on f A \ y \ f ` A \ f (the_inv_into A f y) = y" apply (simp add: the_inv_into_def) apply (rule the1I2) apply (blast dest: inj_onD) apply blast done lemma the_inv_into_into: "inj_on f A \ x \ f ` A \ A \ B \ the_inv_into A f x \ B" apply (simp add: the_inv_into_def) apply (rule the1I2) apply (blast dest: inj_onD) apply blast done lemma the_inv_into_onto [simp]: "inj_on f A \ the_inv_into A f ` (f ` A) = A" by (fast intro: the_inv_into_into the_inv_into_f_f [symmetric]) lemma the_inv_into_f_eq: "inj_on f A \ f x = y \ x \ A \ the_inv_into A f y = x" apply (erule subst) apply (erule the_inv_into_f_f) apply assumption done lemma the_inv_into_comp: "inj_on f (g ` A) \ inj_on g A \ x \ f ` g ` A \ the_inv_into A (f \ g) x = (the_inv_into A g \ the_inv_into (g ` A) f) x" apply (rule the_inv_into_f_eq) apply (fast intro: comp_inj_on) apply (simp add: f_the_inv_into_f the_inv_into_into) apply (simp add: the_inv_into_into) done lemma inj_on_the_inv_into: "inj_on f A \ inj_on (the_inv_into A f) (f ` A)" by (auto intro: inj_onI simp: the_inv_into_f_f) lemma bij_betw_the_inv_into: "bij_betw f A B \ bij_betw (the_inv_into A f) B A" by (auto simp add: bij_betw_def inj_on_the_inv_into the_inv_into_into) abbreviation the_inv :: "('a \ 'b) \ ('b \ 'a)" where "the_inv f \ the_inv_into UNIV f" lemma the_inv_f_f: "the_inv f (f x) = x" if "inj f" using that UNIV_I by (rule the_inv_into_f_f) subsection \Cantor's Paradox\ theorem Cantors_paradox: "\f. f ` A = Pow A" proof assume "\f. f ` A = Pow A" then obtain f where f: "f ` A = Pow A" .. let ?X = "{a \ A. a \ f a}" have "?X \ Pow A" by blast then have "?X \ f ` A" by (simp only: f) then obtain x where "x \ A" and "f x = ?X" by blast then show False by blast qed subsection \Monotonic functions over a set\ definition "mono_on f A \ \r s. r \ A \ s \ A \ r \ s \ f r \ f s" lemma mono_onI: "(\r s. r \ A \ s \ A \ r \ s \ f r \ f s) \ mono_on f A" unfolding mono_on_def by simp lemma mono_onD: "\mono_on f A; r \ A; s \ A; r \ s\ \ f r \ f s" unfolding mono_on_def by simp lemma mono_imp_mono_on: "mono f \ mono_on f A" unfolding mono_def mono_on_def by auto lemma mono_on_subset: "mono_on f A \ B \ A \ mono_on f B" unfolding mono_on_def by auto definition "strict_mono_on f A \ \r s. r \ A \ s \ A \ r < s \ f r < f s" lemma strict_mono_onI: "(\r s. r \ A \ s \ A \ r < s \ f r < f s) \ strict_mono_on f A" unfolding strict_mono_on_def by simp lemma strict_mono_onD: "\strict_mono_on f A; r \ A; s \ A; r < s\ \ f r < f s" unfolding strict_mono_on_def by simp lemma mono_on_greaterD: assumes "mono_on g A" "x \ A" "y \ A" "g x > (g (y::_::linorder) :: _ :: linorder)" shows "x > y" proof (rule ccontr) assume "\x > y" hence "x \ y" by (simp add: not_less) from assms(1-3) and this have "g x \ g y" by (rule mono_onD) with assms(4) show False by simp qed lemma strict_mono_inv: fixes f :: "('a::linorder) \ ('b::linorder)" assumes "strict_mono f" and "surj f" and inv: "\x. g (f x) = x" shows "strict_mono g" proof fix x y :: 'b assume "x < y" from \surj f\ obtain x' y' where [simp]: "x = f x'" "y = f y'" by blast with \x < y\ and \strict_mono f\ have "x' < y'" by (simp add: strict_mono_less) with inv show "g x < g y" by simp qed lemma strict_mono_on_imp_inj_on: assumes "strict_mono_on (f :: (_ :: linorder) \ (_ :: preorder)) A" shows "inj_on f A" proof (rule inj_onI) fix x y assume "x \ A" "y \ A" "f x = f y" thus "x = y" by (cases x y rule: linorder_cases) (auto dest: strict_mono_onD[OF assms, of x y] strict_mono_onD[OF assms, of y x]) qed lemma strict_mono_on_leD: assumes "strict_mono_on (f :: (_ :: linorder) \ _ :: preorder) A" "x \ A" "y \ A" "x \ y" shows "f x \ f y" proof (insert le_less_linear[of y x], elim disjE) assume "x < y" with assms have "f x < f y" by (rule_tac strict_mono_onD[OF assms(1)]) simp_all thus ?thesis by (rule less_imp_le) qed (insert assms, simp) lemma strict_mono_on_eqD: fixes f :: "(_ :: linorder) \ (_ :: preorder)" assumes "strict_mono_on f A" "f x = f y" "x \ A" "y \ A" shows "y = x" using assms by (rule_tac linorder_cases[of x y]) (auto dest: strict_mono_onD) lemma strict_mono_on_imp_mono_on: "strict_mono_on (f :: (_ :: linorder) \ _ :: preorder) A \ mono_on f A" by (rule mono_onI, rule strict_mono_on_leD) subsection \Setup\ subsubsection \Proof tools\ text \Simplify terms of the form \f(\,x:=y,\,x:=z,\)\ to \f(\,x:=z,\)\\ simproc_setup fun_upd2 ("f(v := w, x := y)") = \fn _ => let fun gen_fun_upd NONE T _ _ = NONE | gen_fun_upd (SOME f) T x y = SOME (Const (\<^const_name>\fun_upd\, T) $ f $ x $ y) fun dest_fun_T1 (Type (_, T :: Ts)) = T fun find_double (t as Const (\<^const_name>\fun_upd\,T) $ f $ x $ y) = let fun find (Const (\<^const_name>\fun_upd\,T) $ g $ v $ w) = if v aconv x then SOME g else gen_fun_upd (find g) T v w | find t = NONE in (dest_fun_T1 T, gen_fun_upd (find f) T x y) end val ss = simpset_of \<^context> fun proc ctxt ct = let val t = Thm.term_of ct in (case find_double t of (T, NONE) => NONE | (T, SOME rhs) => SOME (Goal.prove ctxt [] [] (Logic.mk_equals (t, rhs)) (fn _ => resolve_tac ctxt [eq_reflection] 1 THEN resolve_tac ctxt @{thms ext} 1 THEN simp_tac (put_simpset ss ctxt) 1))) end in proc end \ subsubsection \Functorial structure of types\ ML_file \Tools/functor.ML\ functor map_fun: map_fun by (simp_all add: fun_eq_iff) functor vimage by (simp_all add: fun_eq_iff vimage_comp) text \Legacy theorem names\ lemmas o_def = comp_def lemmas o_apply = comp_apply lemmas o_assoc = comp_assoc [symmetric] lemmas id_o = id_comp lemmas o_id = comp_id lemmas o_eq_dest = comp_eq_dest lemmas o_eq_elim = comp_eq_elim lemmas o_eq_dest_lhs = comp_eq_dest_lhs lemmas o_eq_id_dest = comp_eq_id_dest end