(* Title: HOL/Conditionally_Complete_Lattices.thy Author: Amine Chaieb and L C Paulson, University of Cambridge Author: Johannes Hölzl, TU München Author: Luke S. Serafin, Carnegie Mellon University *) section \Conditionally-complete Lattices\ theory Conditionally_Complete_Lattices imports Finite_Set Lattices_Big Set_Interval begin context preorder begin definition "bdd_above A \ (\M. \x \ A. x \ M)" definition "bdd_below A \ (\m. \x \ A. m \ x)" lemma bdd_aboveI[intro]: "(\x. x \ A \ x \ M) \ bdd_above A" by (auto simp: bdd_above_def) lemma bdd_belowI[intro]: "(\x. x \ A \ m \ x) \ bdd_below A" by (auto simp: bdd_below_def) lemma bdd_aboveI2: "(\x. x \ A \ f x \ M) \ bdd_above (f`A)" by force lemma bdd_belowI2: "(\x. x \ A \ m \ f x) \ bdd_below (f`A)" by force lemma bdd_above_empty [simp, intro]: "bdd_above {}" unfolding bdd_above_def by auto lemma bdd_below_empty [simp, intro]: "bdd_below {}" unfolding bdd_below_def by auto lemma bdd_above_mono: "bdd_above B \ A \ B \ bdd_above A" by (metis (full_types) bdd_above_def order_class.le_neq_trans psubsetD) lemma bdd_below_mono: "bdd_below B \ A \ B \ bdd_below A" by (metis bdd_below_def order_class.le_neq_trans psubsetD) lemma bdd_above_Int1 [simp]: "bdd_above A \ bdd_above (A \ B)" using bdd_above_mono by auto lemma bdd_above_Int2 [simp]: "bdd_above B \ bdd_above (A \ B)" using bdd_above_mono by auto lemma bdd_below_Int1 [simp]: "bdd_below A \ bdd_below (A \ B)" using bdd_below_mono by auto lemma bdd_below_Int2 [simp]: "bdd_below B \ bdd_below (A \ B)" using bdd_below_mono by auto lemma bdd_above_Ioo [simp, intro]: "bdd_above {a <..< b}" by (auto simp add: bdd_above_def intro!: exI[of _ b] less_imp_le) lemma bdd_above_Ico [simp, intro]: "bdd_above {a ..< b}" by (auto simp add: bdd_above_def intro!: exI[of _ b] less_imp_le) lemma bdd_above_Iio [simp, intro]: "bdd_above {..< b}" by (auto simp add: bdd_above_def intro: exI[of _ b] less_imp_le) lemma bdd_above_Ioc [simp, intro]: "bdd_above {a <.. b}" by (auto simp add: bdd_above_def intro: exI[of _ b] less_imp_le) lemma bdd_above_Icc [simp, intro]: "bdd_above {a .. b}" by (auto simp add: bdd_above_def intro: exI[of _ b] less_imp_le) lemma bdd_above_Iic [simp, intro]: "bdd_above {.. b}" by (auto simp add: bdd_above_def intro: exI[of _ b] less_imp_le) lemma bdd_below_Ioo [simp, intro]: "bdd_below {a <..< b}" by (auto simp add: bdd_below_def intro!: exI[of _ a] less_imp_le) lemma bdd_below_Ioc [simp, intro]: "bdd_below {a <.. b}" by (auto simp add: bdd_below_def intro!: exI[of _ a] less_imp_le) lemma bdd_below_Ioi [simp, intro]: "bdd_below {a <..}" by (auto simp add: bdd_below_def intro: exI[of _ a] less_imp_le) lemma bdd_below_Ico [simp, intro]: "bdd_below {a ..< b}" by (auto simp add: bdd_below_def intro: exI[of _ a] less_imp_le) lemma bdd_below_Icc [simp, intro]: "bdd_below {a .. b}" by (auto simp add: bdd_below_def intro: exI[of _ a] less_imp_le) lemma bdd_below_Ici [simp, intro]: "bdd_below {a ..}" by (auto simp add: bdd_below_def intro: exI[of _ a] less_imp_le) end lemma (in order_top) bdd_above_top[simp, intro!]: "bdd_above A" by (rule bdd_aboveI[of _ top]) simp lemma (in order_bot) bdd_above_bot[simp, intro!]: "bdd_below A" by (rule bdd_belowI[of _ bot]) simp lemma bdd_above_image_mono: "mono f \ bdd_above A \ bdd_above (f`A)" by (auto simp: bdd_above_def mono_def) lemma bdd_below_image_mono: "mono f \ bdd_below A \ bdd_below (f`A)" by (auto simp: bdd_below_def mono_def) lemma bdd_above_image_antimono: "antimono f \ bdd_below A \ bdd_above (f`A)" by (auto simp: bdd_above_def bdd_below_def antimono_def) lemma bdd_below_image_antimono: "antimono f \ bdd_above A \ bdd_below (f`A)" by (auto simp: bdd_above_def bdd_below_def antimono_def) lemma fixes X :: "'a::ordered_ab_group_add set" shows bdd_above_uminus[simp]: "bdd_above (uminus ` X) \ bdd_below X" and bdd_below_uminus[simp]: "bdd_below (uminus ` X) \ bdd_above X" using bdd_above_image_antimono[of uminus X] bdd_below_image_antimono[of uminus "uminus`X"] using bdd_below_image_antimono[of uminus X] bdd_above_image_antimono[of uminus "uminus`X"] by (auto simp: antimono_def image_image) context lattice begin lemma bdd_above_insert [simp]: "bdd_above (insert a A) = bdd_above A" by (auto simp: bdd_above_def intro: le_supI2 sup_ge1) lemma bdd_below_insert [simp]: "bdd_below (insert a A) = bdd_below A" by (auto simp: bdd_below_def intro: le_infI2 inf_le1) lemma bdd_finite [simp]: assumes "finite A" shows bdd_above_finite: "bdd_above A" and bdd_below_finite: "bdd_below A" using assms by (induct rule: finite_induct, auto) lemma bdd_above_Un [simp]: "bdd_above (A \ B) = (bdd_above A \ bdd_above B)" proof assume "bdd_above (A \ B)" thus "bdd_above A \ bdd_above B" unfolding bdd_above_def by auto next assume "bdd_above A \ bdd_above B" then obtain a b where "\x\A. x \ a" "\x\B. x \ b" unfolding bdd_above_def by auto hence "\x \ A \ B. x \ sup a b" by (auto intro: Un_iff le_supI1 le_supI2) thus "bdd_above (A \ B)" unfolding bdd_above_def .. qed lemma bdd_below_Un [simp]: "bdd_below (A \ B) = (bdd_below A \ bdd_below B)" proof assume "bdd_below (A \ B)" thus "bdd_below A \ bdd_below B" unfolding bdd_below_def by auto next assume "bdd_below A \ bdd_below B" then obtain a b where "\x\A. a \ x" "\x\B. b \ x" unfolding bdd_below_def by auto hence "\x \ A \ B. inf a b \ x" by (auto intro: Un_iff le_infI1 le_infI2) thus "bdd_below (A \ B)" unfolding bdd_below_def .. qed lemma bdd_above_image_sup[simp]: "bdd_above ((\x. sup (f x) (g x)) ` A) \ bdd_above (f`A) \ bdd_above (g`A)" by (auto simp: bdd_above_def intro: le_supI1 le_supI2) lemma bdd_below_image_inf[simp]: "bdd_below ((\x. inf (f x) (g x)) ` A) \ bdd_below (f`A) \ bdd_below (g`A)" by (auto simp: bdd_below_def intro: le_infI1 le_infI2) lemma bdd_below_UN[simp]: "finite I \ bdd_below (\i\I. A i) = (\i \ I. bdd_below (A i))" by (induction I rule: finite.induct) auto lemma bdd_above_UN[simp]: "finite I \ bdd_above (\i\I. A i) = (\i \ I. bdd_above (A i))" by (induction I rule: finite.induct) auto end text \ To avoid name classes with the \<^class>\complete_lattice\-class we prefix \<^const>\Sup\ and \<^const>\Inf\ in theorem names with c. \ class conditionally_complete_lattice = lattice + Sup + Inf + assumes cInf_lower: "x \ X \ bdd_below X \ Inf X \ x" and cInf_greatest: "X \ {} \ (\x. x \ X \ z \ x) \ z \ Inf X" assumes cSup_upper: "x \ X \ bdd_above X \ x \ Sup X" and cSup_least: "X \ {} \ (\x. x \ X \ x \ z) \ Sup X \ z" begin lemma cSup_upper2: "x \ X \ y \ x \ bdd_above X \ y \ Sup X" by (metis cSup_upper order_trans) lemma cInf_lower2: "x \ X \ x \ y \ bdd_below X \ Inf X \ y" by (metis cInf_lower order_trans) lemma cSup_mono: "B \ {} \ bdd_above A \ (\b. b \ B \ \a\A. b \ a) \ Sup B \ Sup A" by (metis cSup_least cSup_upper2) lemma cInf_mono: "B \ {} \ bdd_below A \ (\b. b \ B \ \a\A. a \ b) \ Inf A \ Inf B" by (metis cInf_greatest cInf_lower2) lemma cSup_subset_mono: "A \ {} \ bdd_above B \ A \ B \ Sup A \ Sup B" by (metis cSup_least cSup_upper subsetD) lemma cInf_superset_mono: "A \ {} \ bdd_below B \ A \ B \ Inf B \ Inf A" by (metis cInf_greatest cInf_lower subsetD) lemma cSup_eq_maximum: "z \ X \ (\x. x \ X \ x \ z) \ Sup X = z" by (intro antisym cSup_upper[of z X] cSup_least[of X z]) auto lemma cInf_eq_minimum: "z \ X \ (\x. x \ X \ z \ x) \ Inf X = z" by (intro antisym cInf_lower[of z X] cInf_greatest[of X z]) auto lemma cSup_le_iff: "S \ {} \ bdd_above S \ Sup S \ a \ (\x\S. x \ a)" by (metis order_trans cSup_upper cSup_least) lemma le_cInf_iff: "S \ {} \ bdd_below S \ a \ Inf S \ (\x\S. a \ x)" by (metis order_trans cInf_lower cInf_greatest) lemma cSup_eq_non_empty: assumes 1: "X \ {}" assumes 2: "\x. x \ X \ x \ a" assumes 3: "\y. (\x. x \ X \ x \ y) \ a \ y" shows "Sup X = a" by (intro 3 1 antisym cSup_least) (auto intro: 2 1 cSup_upper) lemma cInf_eq_non_empty: assumes 1: "X \ {}" assumes 2: "\x. x \ X \ a \ x" assumes 3: "\y. (\x. x \ X \ y \ x) \ y \ a" shows "Inf X = a" by (intro 3 1 antisym cInf_greatest) (auto intro: 2 1 cInf_lower) lemma cInf_cSup: "S \ {} \ bdd_below S \ Inf S = Sup {x. \s\S. x \ s}" by (rule cInf_eq_non_empty) (auto intro!: cSup_upper cSup_least simp: bdd_below_def) lemma cSup_cInf: "S \ {} \ bdd_above S \ Sup S = Inf {x. \s\S. s \ x}" by (rule cSup_eq_non_empty) (auto intro!: cInf_lower cInf_greatest simp: bdd_above_def) lemma cSup_insert: "X \ {} \ bdd_above X \ Sup (insert a X) = sup a (Sup X)" by (intro cSup_eq_non_empty) (auto intro: le_supI2 cSup_upper cSup_least) lemma cInf_insert: "X \ {} \ bdd_below X \ Inf (insert a X) = inf a (Inf X)" by (intro cInf_eq_non_empty) (auto intro: le_infI2 cInf_lower cInf_greatest) lemma cSup_singleton [simp]: "Sup {x} = x" by (intro cSup_eq_maximum) auto lemma cInf_singleton [simp]: "Inf {x} = x" by (intro cInf_eq_minimum) auto lemma cSup_insert_If: "bdd_above X \ Sup (insert a X) = (if X = {} then a else sup a (Sup X))" using cSup_insert[of X] by simp lemma cInf_insert_If: "bdd_below X \ Inf (insert a X) = (if X = {} then a else inf a (Inf X))" using cInf_insert[of X] by simp lemma le_cSup_finite: "finite X \ x \ X \ x \ Sup X" proof (induct X arbitrary: x rule: finite_induct) case (insert x X y) then show ?case by (cases "X = {}") (auto simp: cSup_insert intro: le_supI2) qed simp lemma cInf_le_finite: "finite X \ x \ X \ Inf X \ x" proof (induct X arbitrary: x rule: finite_induct) case (insert x X y) then show ?case by (cases "X = {}") (auto simp: cInf_insert intro: le_infI2) qed simp lemma cSup_eq_Sup_fin: "finite X \ X \ {} \ Sup X = Sup_fin X" by (induct X rule: finite_ne_induct) (simp_all add: cSup_insert) lemma cInf_eq_Inf_fin: "finite X \ X \ {} \ Inf X = Inf_fin X" by (induct X rule: finite_ne_induct) (simp_all add: cInf_insert) lemma cSup_atMost[simp]: "Sup {..x} = x" by (auto intro!: cSup_eq_maximum) lemma cSup_greaterThanAtMost[simp]: "y < x \ Sup {y<..x} = x" by (auto intro!: cSup_eq_maximum) lemma cSup_atLeastAtMost[simp]: "y \ x \ Sup {y..x} = x" by (auto intro!: cSup_eq_maximum) lemma cInf_atLeast[simp]: "Inf {x..} = x" by (auto intro!: cInf_eq_minimum) lemma cInf_atLeastLessThan[simp]: "y < x \ Inf {y.. x \ Inf {y..x} = y" by (auto intro!: cInf_eq_minimum) lemma cINF_lower: "bdd_below (f ` A) \ x \ A \ \(f ` A) \ f x" using cInf_lower [of _ "f ` A"] by simp lemma cINF_greatest: "A \ {} \ (\x. x \ A \ m \ f x) \ m \ \(f ` A)" using cInf_greatest [of "f ` A"] by auto lemma cSUP_upper: "x \ A \ bdd_above (f ` A) \ f x \ \(f ` A)" using cSup_upper [of _ "f ` A"] by simp lemma cSUP_least: "A \ {} \ (\x. x \ A \ f x \ M) \ \(f ` A) \ M" using cSup_least [of "f ` A"] by auto lemma cINF_lower2: "bdd_below (f ` A) \ x \ A \ f x \ u \ \(f ` A) \ u" by (auto intro: cINF_lower order_trans) lemma cSUP_upper2: "bdd_above (f ` A) \ x \ A \ u \ f x \ u \ \(f ` A)" by (auto intro: cSUP_upper order_trans) lemma cSUP_const [simp]: "A \ {} \ (\x\A. c) = c" by (intro antisym cSUP_least) (auto intro: cSUP_upper) lemma cINF_const [simp]: "A \ {} \ (\x\A. c) = c" by (intro antisym cINF_greatest) (auto intro: cINF_lower) lemma le_cINF_iff: "A \ {} \ bdd_below (f ` A) \ u \ \(f ` A) \ (\x\A. u \ f x)" by (metis cINF_greatest cINF_lower order_trans) lemma cSUP_le_iff: "A \ {} \ bdd_above (f ` A) \ \(f ` A) \ u \ (\x\A. f x \ u)" by (metis cSUP_least cSUP_upper order_trans) lemma less_cINF_D: "bdd_below (f`A) \ y < (\i\A. f i) \ i \ A \ y < f i" by (metis cINF_lower less_le_trans) lemma cSUP_lessD: "bdd_above (f`A) \ (\i\A. f i) < y \ i \ A \ f i < y" by (metis cSUP_upper le_less_trans) lemma cINF_insert: "A \ {} \ bdd_below (f ` A) \ \(f ` insert a A) = inf (f a) (\(f ` A))" by (simp add: cInf_insert) lemma cSUP_insert: "A \ {} \ bdd_above (f ` A) \ \(f ` insert a A) = sup (f a) (\(f ` A))" by (simp add: cSup_insert) lemma cINF_mono: "B \ {} \ bdd_below (f ` A) \ (\m. m \ B \ \n\A. f n \ g m) \ \(f ` A) \ \(g ` B)" using cInf_mono [of "g ` B" "f ` A"] by auto lemma cSUP_mono: "A \ {} \ bdd_above (g ` B) \ (\n. n \ A \ \m\B. f n \ g m) \ \(f ` A) \ \(g ` B)" using cSup_mono [of "f ` A" "g ` B"] by auto lemma cINF_superset_mono: "A \ {} \ bdd_below (g ` B) \ A \ B \ (\x. x \ B \ g x \ f x) \ \(g ` B) \ \(f ` A)" by (rule cINF_mono) auto lemma cSUP_subset_mono: "\A \ {}; bdd_above (g ` B); A \ B; \x. x \ A \ f x \ g x\ \ \ (f ` A) \ \ (g ` B)" by (rule cSUP_mono) auto lemma less_eq_cInf_inter: "bdd_below A \ bdd_below B \ A \ B \ {} \ inf (Inf A) (Inf B) \ Inf (A \ B)" by (metis cInf_superset_mono lattice_class.inf_sup_ord(1) le_infI1) lemma cSup_inter_less_eq: "bdd_above A \ bdd_above B \ A \ B \ {} \ Sup (A \ B) \ sup (Sup A) (Sup B) " by (metis cSup_subset_mono lattice_class.inf_sup_ord(1) le_supI1) lemma cInf_union_distrib: "A \ {} \ bdd_below A \ B \ {} \ bdd_below B \ Inf (A \ B) = inf (Inf A) (Inf B)" by (intro antisym le_infI cInf_greatest cInf_lower) (auto intro: le_infI1 le_infI2 cInf_lower) lemma cINF_union: "A \ {} \ bdd_below (f ` A) \ B \ {} \ bdd_below (f ` B) \ \ (f ` (A \ B)) = \ (f ` A) \ \ (f ` B)" using cInf_union_distrib [of "f ` A" "f ` B"] by (simp add: image_Un) lemma cSup_union_distrib: "A \ {} \ bdd_above A \ B \ {} \ bdd_above B \ Sup (A \ B) = sup (Sup A) (Sup B)" by (intro antisym le_supI cSup_least cSup_upper) (auto intro: le_supI1 le_supI2 cSup_upper) lemma cSUP_union: "A \ {} \ bdd_above (f ` A) \ B \ {} \ bdd_above (f ` B) \ \ (f ` (A \ B)) = \ (f ` A) \ \ (f ` B)" using cSup_union_distrib [of "f ` A" "f ` B"] by (simp add: image_Un) lemma cINF_inf_distrib: "A \ {} \ bdd_below (f`A) \ bdd_below (g`A) \ \ (f ` A) \ \ (g ` A) = (\a\A. inf (f a) (g a))" by (intro antisym le_infI cINF_greatest cINF_lower2) (auto intro: le_infI1 le_infI2 cINF_greatest cINF_lower le_infI) lemma SUP_sup_distrib: "A \ {} \ bdd_above (f`A) \ bdd_above (g`A) \ \ (f ` A) \ \ (g ` A) = (\a\A. sup (f a) (g a))" by (intro antisym le_supI cSUP_least cSUP_upper2) (auto intro: le_supI1 le_supI2 cSUP_least cSUP_upper le_supI) lemma cInf_le_cSup: "A \ {} \ bdd_above A \ bdd_below A \ Inf A \ Sup A" by (auto intro!: cSup_upper2[of "SOME a. a \ A"] intro: someI cInf_lower) end instance complete_lattice \ conditionally_complete_lattice by standard (auto intro: Sup_upper Sup_least Inf_lower Inf_greatest) lemma cSup_eq: fixes a :: "'a :: {conditionally_complete_lattice, no_bot}" assumes upper: "\x. x \ X \ x \ a" assumes least: "\y. (\x. x \ X \ x \ y) \ a \ y" shows "Sup X = a" proof cases assume "X = {}" with lt_ex[of a] least show ?thesis by (auto simp: less_le_not_le) qed (intro cSup_eq_non_empty assms) lemma cInf_eq: fixes a :: "'a :: {conditionally_complete_lattice, no_top}" assumes upper: "\x. x \ X \ a \ x" assumes least: "\y. (\x. x \ X \ y \ x) \ y \ a" shows "Inf X = a" proof cases assume "X = {}" with gt_ex[of a] least show ?thesis by (auto simp: less_le_not_le) qed (intro cInf_eq_non_empty assms) class conditionally_complete_linorder = conditionally_complete_lattice + linorder begin lemma less_cSup_iff: "X \ {} \ bdd_above X \ y < Sup X \ (\x\X. y < x)" by (rule iffI) (metis cSup_least not_less, metis cSup_upper less_le_trans) lemma cInf_less_iff: "X \ {} \ bdd_below X \ Inf X < y \ (\x\X. x < y)" by (rule iffI) (metis cInf_greatest not_less, metis cInf_lower le_less_trans) lemma cINF_less_iff: "A \ {} \ bdd_below (f`A) \ (\i\A. f i) < a \ (\x\A. f x < a)" using cInf_less_iff[of "f`A"] by auto lemma less_cSUP_iff: "A \ {} \ bdd_above (f`A) \ a < (\i\A. f i) \ (\x\A. a < f x)" using less_cSup_iff[of "f`A"] by auto lemma less_cSupE: assumes "y < Sup X" "X \ {}" obtains x where "x \ X" "y < x" by (metis cSup_least assms not_le that) lemma less_cSupD: "X \ {} \ z < Sup X \ \x\X. z < x" by (metis less_cSup_iff not_le_imp_less bdd_above_def) lemma cInf_lessD: "X \ {} \ Inf X < z \ \x\X. x < z" by (metis cInf_less_iff not_le_imp_less bdd_below_def) lemma complete_interval: assumes "a < b" and "P a" and "\ P b" shows "\c. a \ c \ c \ b \ (\x. a \ x \ x < c \ P x) \ (\d. (\x. a \ x \ x < d \ P x) \ d \ c)" proof (rule exI [where x = "Sup {d. \x. a \ x \ x < d \ P x}"], auto) show "a \ Sup {d. \c. a \ c \ c < d \ P c}" by (rule cSup_upper, auto simp: bdd_above_def) (metis \a < b\ \\ P b\ linear less_le) next show "Sup {d. \c. a \ c \ c < d \ P c} \ b" apply (rule cSup_least) apply auto apply (metis less_le_not_le) apply (metis \a \\ P b\ linear less_le) done next fix x assume x: "a \ x" and lt: "x < Sup {d. \c. a \ c \ c < d \ P c}" show "P x" apply (rule less_cSupE [OF lt], auto) apply (metis less_le_not_le) apply (metis x) done next fix d assume 0: "\x. a \ x \ x < d \ P x" thus "d \ Sup {d. \c. a \ c \ c < d \ P c}" by (rule_tac cSup_upper, auto simp: bdd_above_def) (metis \a \\ P b\ linear less_le) qed end instance complete_linorder < conditionally_complete_linorder .. lemma cSup_eq_Max: "finite (X::'a::conditionally_complete_linorder set) \ X \ {} \ Sup X = Max X" using cSup_eq_Sup_fin[of X] by (simp add: Sup_fin_Max) lemma cInf_eq_Min: "finite (X::'a::conditionally_complete_linorder set) \ X \ {} \ Inf X = Min X" using cInf_eq_Inf_fin[of X] by (simp add: Inf_fin_Min) lemma cSup_lessThan[simp]: "Sup {.. Sup {y<.. Sup {y.. Inf {y<..x::'a::{conditionally_complete_linorder, dense_linorder}} = y" by (auto intro!: cInf_eq_non_empty intro: dense_ge_bounded) lemma cInf_greaterThanLessThan[simp]: "y < x \ Inf {y<.. Inf (insert x S) = (if S = {} then x else min x (Inf S))" by (simp add: cInf_eq_Min) lemma Sup_insert_finite: fixes S :: "'a::conditionally_complete_linorder set" shows "finite S \ Sup (insert x S) = (if S = {} then x else max x (Sup S))" by (simp add: cSup_insert sup_max) lemma finite_imp_less_Inf: fixes a :: "'a::conditionally_complete_linorder" shows "\finite X; x \ X; \x. x\X \ a < x\ \ a < Inf X" by (induction X rule: finite_induct) (simp_all add: cInf_eq_Min Inf_insert_finite) lemma finite_less_Inf_iff: fixes a :: "'a :: conditionally_complete_linorder" shows "\finite X; X \ {}\ \ a < Inf X \ (\x \ X. a < x)" by (auto simp: cInf_eq_Min) lemma finite_imp_Sup_less: fixes a :: "'a::conditionally_complete_linorder" shows "\finite X; x \ X; \x. x\X \ a > x\ \ a > Sup X" by (induction X rule: finite_induct) (simp_all add: cSup_eq_Max Sup_insert_finite) lemma finite_Sup_less_iff: fixes a :: "'a :: conditionally_complete_linorder" shows "\finite X; X \ {}\ \ a > Sup X \ (\x \ X. a > x)" by (auto simp: cSup_eq_Max) class linear_continuum = conditionally_complete_linorder + dense_linorder + assumes UNIV_not_singleton: "\a b::'a. a \ b" begin lemma ex_gt_or_lt: "\b. a < b \ b < a" by (metis UNIV_not_singleton neq_iff) end instantiation nat :: conditionally_complete_linorder begin definition "Sup (X::nat set) = Max X" definition "Inf (X::nat set) = (LEAST n. n \ X)" lemma bdd_above_nat: "bdd_above X \ finite (X::nat set)" proof assume "bdd_above X" then obtain z where "X \ {.. z}" by (auto simp: bdd_above_def) then show "finite X" by (rule finite_subset) simp qed simp instance proof fix x :: nat fix X :: "nat set" show "Inf X \ x" if "x \ X" "bdd_below X" using that by (simp add: Inf_nat_def Least_le) show "x \ Inf X" if "X \ {}" "\y. y \ X \ x \ y" using that unfolding Inf_nat_def ex_in_conv[symmetric] by (rule LeastI2_ex) show "x \ Sup X" if "x \ X" "bdd_above X" using that by (simp add: Sup_nat_def bdd_above_nat) show "Sup X \ x" if "X \ {}" "\y. y \ X \ y \ x" proof - from that have "bdd_above X" by (auto simp: bdd_above_def) with that show ?thesis by (simp add: Sup_nat_def bdd_above_nat) qed qed end lemma Inf_nat_def1: fixes K::"nat set" assumes "K \ {}" shows "Inf K \ K" by (auto simp add: Min_def Inf_nat_def) (meson LeastI assms bot.extremum_unique subsetI) instantiation int :: conditionally_complete_linorder begin definition "Sup (X::int set) = (THE x. x \ X \ (\y\X. y \ x))" definition "Inf (X::int set) = - (Sup (uminus ` X))" instance proof { fix x :: int and X :: "int set" assume "X \ {}" "bdd_above X" then obtain x y where "X \ {..y}" "x \ X" by (auto simp: bdd_above_def) then have *: "finite (X \ {x..y})" "X \ {x..y} \ {}" and "x \ y" by (auto simp: subset_eq) have "\!x\X. (\y\X. y \ x)" proof { fix z assume "z \ X" have "z \ Max (X \ {x..y})" proof cases assume "x \ z" with \z \ X\ \X \ {..y}\ *(1) show ?thesis by (auto intro!: Max_ge) next assume "\ x \ z" then have "z < x" by simp also have "x \ Max (X \ {x..y})" using \x \ X\ *(1) \x \ y\ by (intro Max_ge) auto finally show ?thesis by simp qed } note le = this with Max_in[OF *] show ex: "Max (X \ {x..y}) \ X \ (\z\X. z \ Max (X \ {x..y}))" by auto fix z assume *: "z \ X \ (\y\X. y \ z)" with le have "z \ Max (X \ {x..y})" by auto moreover have "Max (X \ {x..y}) \ z" using * ex by auto ultimately show "z = Max (X \ {x..y})" by auto qed then have "Sup X \ X \ (\y\X. y \ Sup X)" unfolding Sup_int_def by (rule theI') } note Sup_int = this { fix x :: int and X :: "int set" assume "x \ X" "bdd_above X" then show "x \ Sup X" using Sup_int[of X] by auto } note le_Sup = this { fix x :: int and X :: "int set" assume "X \ {}" "\y. y \ X \ y \ x" then show "Sup X \ x" using Sup_int[of X] by (auto simp: bdd_above_def) } note Sup_le = this { fix x :: int and X :: "int set" assume "x \ X" "bdd_below X" then show "Inf X \ x" using le_Sup[of "-x" "uminus ` X"] by (auto simp: Inf_int_def) } { fix x :: int and X :: "int set" assume "X \ {}" "\y. y \ X \ x \ y" then show "x \ Inf X" using Sup_le[of "uminus ` X" "-x"] by (force simp: Inf_int_def) } qed end lemma interval_cases: fixes S :: "'a :: conditionally_complete_linorder set" assumes ivl: "\a b x. a \ S \ b \ S \ a \ x \ x \ b \ x \ S" shows "\a b. S = {} \ S = UNIV \ S = {.. S = {..b} \ S = {a<..} \ S = {a..} \ S = {a<.. S = {a<..b} \ S = {a.. S = {a..b}" proof - define lower upper where "lower = {x. \s\S. s \ x}" and "upper = {x. \s\S. x \ s}" with ivl have "S = lower \ upper" by auto moreover have "\a. upper = UNIV \ upper = {} \ upper = {.. a} \ upper = {..< a}" proof cases assume *: "bdd_above S \ S \ {}" from * have "upper \ {.. Sup S}" by (auto simp: upper_def intro: cSup_upper2) moreover from * have "{..< Sup S} \ upper" by (force simp add: less_cSup_iff upper_def subset_eq Ball_def) ultimately have "upper = {.. Sup S} \ upper = {..< Sup S}" unfolding ivl_disj_un(2)[symmetric] by auto then show ?thesis by auto next assume "\ (bdd_above S \ S \ {})" then have "upper = UNIV \ upper = {}" by (auto simp: upper_def bdd_above_def not_le dest: less_imp_le) then show ?thesis by auto qed moreover have "\b. lower = UNIV \ lower = {} \ lower = {b ..} \ lower = {b <..}" proof cases assume *: "bdd_below S \ S \ {}" from * have "lower \ {Inf S ..}" by (auto simp: lower_def intro: cInf_lower2) moreover from * have "{Inf S <..} \ lower" by (force simp add: cInf_less_iff lower_def subset_eq Ball_def) ultimately have "lower = {Inf S ..} \ lower = {Inf S <..}" unfolding ivl_disj_un(1)[symmetric] by auto then show ?thesis by auto next assume "\ (bdd_below S \ S \ {})" then have "lower = UNIV \ lower = {}" by (auto simp: lower_def bdd_below_def not_le dest: less_imp_le) then show ?thesis by auto qed ultimately show ?thesis unfolding greaterThanAtMost_def greaterThanLessThan_def atLeastAtMost_def atLeastLessThan_def by (metis inf_bot_left inf_bot_right inf_top.left_neutral inf_top.right_neutral) qed lemma cSUP_eq_cINF_D: fixes f :: "_ \ 'b::conditionally_complete_lattice" assumes eq: "(\x\A. f x) = (\x\A. f x)" and bdd: "bdd_above (f ` A)" "bdd_below (f ` A)" and a: "a \ A" shows "f a = (\x\A. f x)" apply (rule antisym) using a bdd apply (auto simp: cINF_lower) apply (metis eq cSUP_upper) done lemma cSUP_UNION: fixes f :: "_ \ 'b::conditionally_complete_lattice" assumes ne: "A \ {}" "\x. x \ A \ B(x) \ {}" and bdd_UN: "bdd_above (\x\A. f ` B x)" shows "(\z \ \x\A. B x. f z) = (\x\A. \z\B x. f z)" proof - have bdd: "\x. x \ A \ bdd_above (f ` B x)" using bdd_UN by (meson UN_upper bdd_above_mono) obtain M where "\x y. x \ A \ y \ B(x) \ f y \ M" using bdd_UN by (auto simp: bdd_above_def) then have bdd2: "bdd_above ((\x. \z\B x. f z) ` A)" unfolding bdd_above_def by (force simp: bdd cSUP_le_iff ne(2)) have "(\z \ \x\A. B x. f z) \ (\x\A. \z\B x. f z)" using assms by (fastforce simp add: intro!: cSUP_least intro: cSUP_upper2 simp: bdd2 bdd) moreover have "(\x\A. \z\B x. f z) \ (\ z \ \x\A. B x. f z)" using assms by (fastforce simp add: intro!: cSUP_least intro: cSUP_upper simp: image_UN bdd_UN) ultimately show ?thesis by (rule order_antisym) qed lemma cINF_UNION: fixes f :: "_ \ 'b::conditionally_complete_lattice" assumes ne: "A \ {}" "\x. x \ A \ B(x) \ {}" and bdd_UN: "bdd_below (\x\A. f ` B x)" shows "(\z \ \x\A. B x. f z) = (\x\A. \z\B x. f z)" proof - have bdd: "\x. x \ A \ bdd_below (f ` B x)" using bdd_UN by (meson UN_upper bdd_below_mono) obtain M where "\x y. x \ A \ y \ B(x) \ f y \ M" using bdd_UN by (auto simp: bdd_below_def) then have bdd2: "bdd_below ((\x. \z\B x. f z) ` A)" unfolding bdd_below_def by (force simp: bdd le_cINF_iff ne(2)) have "(\z \ \x\A. B x. f z) \ (\x\A. \z\B x. f z)" using assms by (fastforce simp add: intro!: cINF_greatest intro: cINF_lower simp: bdd2 bdd) moreover have "(\x\A. \z\B x. f z) \ (\z \ \x\A. B x. f z)" using assms by (fastforce simp add: intro!: cINF_greatest intro: cINF_lower2 simp: bdd bdd_UN bdd2) ultimately show ?thesis by (rule order_antisym) qed lemma cSup_abs_le: fixes S :: "('a::{linordered_idom,conditionally_complete_linorder}) set" shows "S \ {} \ (\x. x\S \ \x\ \ a) \ \Sup S\ \ a" apply (auto simp add: abs_le_iff intro: cSup_least) by (metis bdd_aboveI cSup_upper neg_le_iff_le order_trans) end