(* Title: FOL/intprover.ML Author: Lawrence C Paulson, Cambridge University Computer Laboratory Copyright 1992 University of Cambridge A naive prover for intuitionistic logic BEWARE OF NAME CLASHES WITH CLASSICAL TACTICS -- use IntPr.fast_tac ... Completeness (for propositional logic) is proved in Roy Dyckhoff. Contraction-Free Sequent Calculi for Intuitionistic Logic. J. Symbolic Logic 57(3), 1992, pages 795-807. The approach was developed independently by Roy Dyckhoff and L C Paulson. *) signature INT_PROVER = sig val best_tac: Proof.context -> int -> tactic val best_dup_tac: Proof.context -> int -> tactic val fast_tac: Proof.context -> int -> tactic val inst_step_tac: Proof.context -> int -> tactic val safe_step_tac: Proof.context -> int -> tactic val safe_brls: (bool * thm) list val safe_tac: Proof.context -> tactic val step_tac: Proof.context -> int -> tactic val step_dup_tac: Proof.context -> int -> tactic val haz_brls: (bool * thm) list val haz_dup_brls: (bool * thm) list end; structure IntPr : INT_PROVER = struct (*Negation is treated as a primitive symbol, with rules notI (introduction), not_to_imp (converts the assumption ~P to P-->False), and not_impE (handles double negations). Could instead rewrite by not_def as the first step of an intuitionistic proof. *) val safe_brls = sort (make_ord lessb) [ (true, @{thm FalseE}), (false, @{thm TrueI}), (false, @{thm refl}), (false, @{thm impI}), (false, @{thm notI}), (false, @{thm allI}), (true, @{thm conjE}), (true, @{thm exE}), (false, @{thm conjI}), (true, @{thm conj_impE}), (true, @{thm disj_impE}), (true, @{thm disjE}), (false, @{thm iffI}), (true, @{thm iffE}), (true, @{thm not_to_imp}) ]; val haz_brls = [ (false, @{thm disjI1}), (false, @{thm disjI2}), (false, @{thm exI}), (true, @{thm allE}), (true, @{thm not_impE}), (true, @{thm imp_impE}), (true, @{thm iff_impE}), (true, @{thm all_impE}), (true, @{thm ex_impE}), (true, @{thm impE}) ]; val haz_dup_brls = [ (false, @{thm disjI1}), (false, @{thm disjI2}), (false, @{thm exI}), (true, @{thm all_dupE}), (true, @{thm not_impE}), (true, @{thm imp_impE}), (true, @{thm iff_impE}), (true, @{thm all_impE}), (true, @{thm ex_impE}), (true, @{thm impE}) ]; (*0 subgoals vs 1 or more: the p in safep is for positive*) val (safe0_brls, safep_brls) = List.partition (curry (op =) 0 o subgoals_of_brl) safe_brls; (*Attack subgoals using safe inferences -- matching, not resolution*) fun safe_step_tac ctxt = FIRST' [ eq_assume_tac, eq_mp_tac ctxt, bimatch_tac ctxt safe0_brls, hyp_subst_tac ctxt, bimatch_tac ctxt safep_brls]; (*Repeatedly attack subgoals using safe inferences -- it's deterministic!*) fun safe_tac ctxt = REPEAT_DETERM_FIRST (safe_step_tac ctxt); (*These steps could instantiate variables and are therefore unsafe.*) fun inst_step_tac ctxt = assume_tac ctxt APPEND' mp_tac ctxt APPEND' biresolve_tac ctxt (safe0_brls @ safep_brls); (*One safe or unsafe step. *) fun step_tac ctxt i = FIRST [safe_tac ctxt, inst_step_tac ctxt i, biresolve_tac ctxt haz_brls i]; fun step_dup_tac ctxt i = FIRST [safe_tac ctxt, inst_step_tac ctxt i, biresolve_tac ctxt haz_dup_brls i]; (*Dumb but fast*) fun fast_tac ctxt = SELECT_GOAL (DEPTH_SOLVE (step_tac ctxt 1)); (*Slower but smarter than fast_tac*) fun best_tac ctxt = SELECT_GOAL (BEST_FIRST (has_fewer_prems 1, size_of_thm) (step_tac ctxt 1)); (*Uses all_dupE: allows multiple use of universal assumptions. VERY slow.*) fun best_dup_tac ctxt = SELECT_GOAL (BEST_FIRST (has_fewer_prems 1, size_of_thm) (step_dup_tac ctxt 1)); end;