open HolKernel boolLib Prim_rec Parse simpLib boolSimps numTheory prim_recTheory arithmeticTheory InductiveDefinition; val hol_ss = bool_ss ++ numSimps.old_ARITH_ss ++ numSimps.REDUCE_ss val lhand = rand o rator val AND_FORALL_THM = GSYM FORALL_AND_THM; val GEN_REWRITE_TAC = fn c => fn thl => Rewrite.GEN_REWRITE_TAC c Rewrite.empty_rewrites thl val _ = new_theory "ind_type"; (* ------------------------------------------------------------------------- *) (* Abstract left inverses for binary injections (we could construct them...) *) (* ------------------------------------------------------------------------- *) val INJ_INVERSE2 = store_thm( "INJ_INVERSE2", ``!P:'A->'B->'C. (!x1 y1 x2 y2. (P x1 y1 = P x2 y2) <=> (x1 = x2) /\ (y1 = y2)) ==> ?X Y. !x y. (X(P x y) = x) /\ (Y(P x y) = y)``, GEN_TAC THEN DISCH_TAC THEN Q.EXISTS_TAC `\z:'C. @x:'A. ?y:'B. P x y = z` THEN Q.EXISTS_TAC `\z:'C. @y:'B. ?x:'A. P x y = z` THEN REPEAT GEN_TAC THEN ASM_SIMP_TAC hol_ss []); (* ------------------------------------------------------------------------- *) (* Define an injective pairing function on ":num". *) (* ------------------------------------------------------------------------- *) val NUMPAIR = new_definition( "NUMPAIR", Term`NUMPAIR x y = (2 EXP x) * (2 * y + 1)`); val NUMPAIR_INJ_LEMMA = store_thm( "NUMPAIR_INJ_LEMMA", ``!x1 y1 x2 y2. (NUMPAIR x1 y1 = NUMPAIR x2 y2) ==> (x1 = x2)``, REWRITE_TAC[NUMPAIR] THEN REPEAT(numLib.INDUCT_TAC THEN GEN_TAC) THEN ASM_SIMP_TAC hol_ss [EXP, GSYM MULT_ASSOC, EQ_MULT_LCANCEL, NOT_SUC, GSYM NOT_SUC, INV_SUC_EQ] THEN TRY (FIRST_ASSUM MATCH_ACCEPT_TAC) THEN DISCH_THEN(MP_TAC o Q.AP_TERM `EVEN`) THEN SIMP_TAC hol_ss [EVEN_MULT, EVEN_ADD]); val NUMPAIR_INJ = store_thm ( "NUMPAIR_INJ", ``!x1 y1 x2 y2. (NUMPAIR x1 y1 = NUMPAIR x2 y2) <=> (x1 = x2) /\ (y1 = y2)``, REPEAT GEN_TAC THEN EQ_TAC THEN DISCH_TAC THEN ASM_REWRITE_TAC[] THEN FIRST_ASSUM(SUBST_ALL_TAC o MATCH_MP NUMPAIR_INJ_LEMMA) THEN POP_ASSUM MP_TAC THEN REWRITE_TAC[NUMPAIR] THEN SIMP_TAC hol_ss [EQ_MULT_LCANCEL, EQ_ADD_RCANCEL, EXP_EQ_0]); val NUMPAIR_DEST = Rsyntax.new_specification { consts = [{const_name = "NUMFST", fixity = NONE}, {const_name = "NUMSND", fixity = NONE}], name = "NUMPAIR_DEST", sat_thm = MATCH_MP INJ_INVERSE2 NUMPAIR_INJ}; (* ------------------------------------------------------------------------- *) (* Also, an injective map bool->num->num (even easier!) *) (* ------------------------------------------------------------------------- *) val NUMSUM = new_definition("NUMSUM", Term`NUMSUM b x = if b then SUC(2 * x) else 2 * x`); Theorem NUMSUM_INJ: !b1 x1 b2 x2. (NUMSUM b1 x1 = NUMSUM b2 x2) <=> (b1 = b2) /\ (x1 = x2) Proof REPEAT GEN_TAC THEN EQ_TAC THEN DISCH_TAC THEN ASM_REWRITE_TAC[] THEN POP_ASSUM(MP_TAC o REWRITE_RULE[NUMSUM]) THEN DISCH_THEN(fn th => MP_TAC th THEN MP_TAC(Q.AP_TERM `EVEN` th)) THEN REPEAT COND_CASES_TAC THEN REWRITE_TAC[EVEN, EVEN_DOUBLE] THEN SIMP_TAC hol_ss [INV_SUC_EQ, EQ_MULT_LCANCEL] QED val NUMSUM_DEST = Rsyntax.new_specification{ consts = [{const_name = "NUMLEFT", fixity = NONE}, {const_name = "NUMRIGHT", fixity = NONE}], name = "NUMSUM_DEST", sat_thm = MATCH_MP INJ_INVERSE2 NUMSUM_INJ}; (* ------------------------------------------------------------------------- *) (* Injection num->Z, where Z == num->A->bool. *) (* ------------------------------------------------------------------------- *) val INJN = new_definition( "INJN", Term`INJN (m:num) = \(n:num) (a:'a). n = m`); val INJN_INJ = store_thm ( "INJN_INJ", ``!n1 n2. (INJN n1 :num->'a->bool = INJN n2) = (n1 = n2)``, REPEAT GEN_TAC THEN EQ_TAC THEN DISCH_TAC THEN ASM_REWRITE_TAC[] THEN POP_ASSUM(MP_TAC o C Q.AP_THM `n1:num` o REWRITE_RULE[INJN]) THEN DISCH_THEN(MP_TAC o C Q.AP_THM `a:'a`) THEN SIMP_TAC bool_ss []); (* ------------------------------------------------------------------------- *) (* Injection A->Z, where Z == num->A->bool. *) (* ------------------------------------------------------------------------- *) val INJA = new_definition( "INJA", Term`INJA (a:'a) = \(n:num) b. b = a`); val INJA_INJ = store_thm( "INJA_INJ", ``!a1 a2. (INJA a1 = INJA a2) = (a1:'a = a2)``, REPEAT GEN_TAC THEN SIMP_TAC bool_ss [INJA, FUN_EQ_THM] THEN EQ_TAC THENL [ DISCH_THEN(MP_TAC o Q.SPEC `a1:'a`) THEN REWRITE_TAC[], DISCH_THEN SUBST1_TAC THEN REWRITE_TAC[] ]); (* ------------------------------------------------------------------------- *) (* Injection (num->Z)->Z, where Z == num->A->bool. *) (* ------------------------------------------------------------------------- *) val INJF = new_definition( "INJF", Term`INJF (f:num->(num->'a->bool)) = \n. f (NUMFST n) (NUMSND n)`); val INJF_INJ = store_thm( "INJF_INJ", ``!f1 f2. (INJF f1 :num->'a->bool = INJF f2) = (f1 = f2)``, REPEAT GEN_TAC THEN EQ_TAC THEN DISCH_TAC THEN ASM_REWRITE_TAC[] THEN REWRITE_TAC[FUN_EQ_THM] THEN MAP_EVERY Q.X_GEN_TAC [`n:num`, `m:num`, `a:'a`] THEN POP_ASSUM(MP_TAC o REWRITE_RULE[INJF]) THEN DISCH_THEN(MP_TAC o C Q.AP_THM `a:'a` o C Q.AP_THM `NUMPAIR n m`) THEN SIMP_TAC bool_ss [NUMPAIR_DEST]); (* ------------------------------------------------------------------------- *) (* Injection Z->Z->Z, where Z == num->A->bool. *) (* ------------------------------------------------------------------------- *) val INJP = new_definition( "INJP", Term`INJP f1 f2:num->'a->bool = \n a. if NUMLEFT n then f1 (NUMRIGHT n) a else f2 (NUMRIGHT n) a`); Theorem INJP_INJ: !(f1:num->'a->bool) f1' f2 f2'. (INJP f1 f2 = INJP f1' f2') <=> (f1 = f1') /\ (f2 = f2') Proof REPEAT GEN_TAC THEN EQ_TAC THEN DISCH_TAC THEN ASM_REWRITE_TAC[] THEN ONCE_REWRITE_TAC[FUN_EQ_THM] THEN SIMP_TAC bool_ss [AND_FORALL_THM] THEN Q.X_GEN_TAC `n:num` THEN POP_ASSUM(MP_TAC o REWRITE_RULE[INJP]) THEN DISCH_THEN(MP_TAC o GEN ``b:bool`` o C Q.AP_THM `NUMSUM b n`) THEN DISCH_THEN(fn th => MP_TAC(Q.SPEC `T` th) THEN MP_TAC(Q.SPEC `F` th)) THEN SIMP_TAC (bool_ss ++ ETA_ss) [NUMSUM_DEST] QED (* ------------------------------------------------------------------------- *) (* Now, set up "constructor" and "bottom" element. *) (* ------------------------------------------------------------------------- *) val ZCONSTR = new_definition( "ZCONSTR", ``ZCONSTR c i r :num->'a->bool = INJP (INJN (SUC c)) (INJP (INJA i) (INJF r))``); val ZBOT = new_definition( "ZBOT", Term`ZBOT = INJP (INJN 0) (@z:num->'a->bool. T)`); val ZCONSTR_ZBOT = store_thm( "ZCONSTR_ZBOT", Term`!c i r. ~(ZCONSTR c i r :num->'a->bool = ZBOT)`, REWRITE_TAC[ZCONSTR, ZBOT, INJP_INJ, INJN_INJ, NOT_SUC]); (* ------------------------------------------------------------------------- *) (* Carve out an inductively defined set. *) (* ------------------------------------------------------------------------- *) val (ZRECSPACE_RULES,ZRECSPACE_INDUCT,ZRECSPACE_CASES) = IndDefLib.Hol_reln `ZRECSPACE (ZBOT:num->'a->bool) /\ (!c i r. (!n. ZRECSPACE (r n)) ==> ZRECSPACE (ZCONSTR c i r))`; local fun new_basic_type_definition tyname (mkname, destname) thm = let val (pred, witness) = dest_comb(concl thm) val predty = type_of pred val dom_ty = #1 (dom_rng predty) val x = mk_var("x", dom_ty) val witness_exists = EXISTS (mk_exists(x, mk_comb(pred, x)),witness) thm val tyax = new_type_definition(tyname,witness_exists) val (mk_dest, dest_mk) = CONJ_PAIR(define_new_type_bijections {name=(tyname^"_repfns"), ABS=mkname, REP=destname, tyax=tyax}) in (SPEC_ALL mk_dest, SPEC_ALL dest_mk) end in val recspace_tydef = new_basic_type_definition "recspace" ("mk_rec","dest_rec") (CONJUNCT1 ZRECSPACE_RULES) end; (* ------------------------------------------------------------------------- *) (* Define lifted constructors. *) (* ------------------------------------------------------------------------- *) val BOTTOM = new_definition( "BOTTOM", Term`BOTTOM = mk_rec (ZBOT:num->'a->bool)`); val CONSTR = new_definition( "CONSTR", Term`CONSTR c i r : 'a recspace = mk_rec (ZCONSTR c i (\n. dest_rec(r n)))`); (* ------------------------------------------------------------------------- *) (* Some lemmas. *) (* ------------------------------------------------------------------------- *) val MK_REC_INJ = store_thm( "MK_REC_INJ", ``!x y. (mk_rec x :'a recspace = mk_rec y) ==> (ZRECSPACE x /\ ZRECSPACE y ==> (x = y))``, REPEAT GEN_TAC THEN DISCH_TAC THEN REWRITE_TAC[snd recspace_tydef] THEN DISCH_THEN(fn th => ONCE_REWRITE_TAC[GSYM th]) THEN ASM_REWRITE_TAC[]); val DEST_REC_INJ = store_thm( "DEST_REC_INJ", ``!x y. (dest_rec x = dest_rec y) = (x:'a recspace = y)``, REPEAT GEN_TAC THEN EQ_TAC THEN DISCH_TAC THEN ASM_REWRITE_TAC[] THEN POP_ASSUM(MP_TAC o Q.AP_TERM `mk_rec:(num->'a->bool)->'a recspace`) THEN REWRITE_TAC[fst recspace_tydef]); (* ------------------------------------------------------------------------- *) (* Show that the set is freely inductively generated. *) (* ------------------------------------------------------------------------- *) val CONSTR_BOT = store_thm( "CONSTR_BOT", ``!c i r. ~(CONSTR c i r :'a recspace = BOTTOM)``, REPEAT GEN_TAC THEN REWRITE_TAC[CONSTR, BOTTOM] THEN DISCH_THEN(MP_TAC o MATCH_MP MK_REC_INJ) THEN REWRITE_TAC[ZCONSTR_ZBOT, ZRECSPACE_RULES] THEN MATCH_MP_TAC(CONJUNCT2 ZRECSPACE_RULES) THEN SIMP_TAC bool_ss [fst recspace_tydef, snd recspace_tydef]); Theorem CONSTR_INJ: !c1 i1 r1 c2 i2 r2. (CONSTR c1 i1 r1 :'a recspace = CONSTR c2 i2 r2) <=> (c1 = c2) /\ (i1 = i2) /\ (r1 = r2) Proof REPEAT GEN_TAC THEN EQ_TAC THEN DISCH_TAC THEN ASM_REWRITE_TAC[] THEN POP_ASSUM(MP_TAC o REWRITE_RULE[CONSTR]) THEN DISCH_THEN(MP_TAC o MATCH_MP MK_REC_INJ) THEN W(C SUBGOAL_THEN ASSUME_TAC o funpow 2 lhand o snd) THENL [ CONJ_TAC THEN MATCH_MP_TAC(CONJUNCT2 ZRECSPACE_RULES) THEN SIMP_TAC bool_ss [fst recspace_tydef, snd recspace_tydef], ASM_REWRITE_TAC[] THEN REWRITE_TAC[ZCONSTR] THEN REWRITE_TAC[INJP_INJ, INJN_INJ, INJF_INJ, INJA_INJ] THEN ONCE_REWRITE_TAC[FUN_EQ_THM] THEN BETA_TAC THEN REWRITE_TAC[INV_SUC_EQ, DEST_REC_INJ] ] QED val CONSTR_IND = store_thm( "CONSTR_IND", ``!P. P(BOTTOM) /\ (!c i r. (!n. P(r n)) ==> P(CONSTR c i r)) ==> !x:'a recspace. P(x)``, REPEAT STRIP_TAC THEN MP_TAC(Q.SPEC `\z:num->'a->bool. ZRECSPACE(z) /\ P(mk_rec z)` ZRECSPACE_INDUCT) THEN BETA_TAC THEN ASM_REWRITE_TAC[ZRECSPACE_RULES, GSYM BOTTOM] THEN W(C SUBGOAL_THEN ASSUME_TAC o funpow 2 lhand o snd) THENL [ REPEAT GEN_TAC THEN SIMP_TAC bool_ss [FORALL_AND_THM] THEN REPEAT STRIP_TAC THENL [ MATCH_MP_TAC(CONJUNCT2 ZRECSPACE_RULES) THEN ASM_REWRITE_TAC[], FIRST_ASSUM (fn implhs => FIRST_ASSUM (fn imp => (MP_TAC (HO_MATCH_MP imp implhs)))) THEN REWRITE_TAC[CONSTR] THEN RULE_ASSUM_TAC(REWRITE_RULE[snd recspace_tydef]) THEN ASM_SIMP_TAC (bool_ss ++ ETA_ss) [] ], ASM_REWRITE_TAC[] THEN DISCH_THEN(MP_TAC o Q.SPEC `dest_rec (x:'a recspace)`) THEN REWRITE_TAC[fst recspace_tydef] THEN REWRITE_TAC[tautLib.TAUT_PROVE ``(a ==> a /\ b) = (a ==> b)``] THEN DISCH_THEN MATCH_MP_TAC THEN REWRITE_TAC[fst recspace_tydef, snd recspace_tydef] ]);; (* ------------------------------------------------------------------------- *) (* Now prove the recursion theorem (this subcase is all we need). *) (* ------------------------------------------------------------------------- *) val CONSTR_REC = store_thm( "CONSTR_REC", ``!Fn:num->'a->(num->'a recspace)->(num->'b)->'b. ?f. (!c i r. f (CONSTR c i r) = Fn c i r (\n. f (r n)))``, REPEAT STRIP_TAC THEN (MP_TAC o prove_nonschematic_inductive_relations_exist bool_monoset) ``(Z:'a recspace->'b->bool) BOTTOM b /\ (!c i r y. (!n. Z (r n) (y n)) ==> Z (CONSTR c i r) (Fn c i r y))`` THEN DISCH_THEN(CHOOSE_THEN(CONJUNCTS_THEN2 STRIP_ASSUME_TAC MP_TAC)) THEN DISCH_THEN(CONJUNCTS_THEN2 ASSUME_TAC (ASSUME_TAC o GSYM)) THEN Q.SUBGOAL_THEN `!x. ?!y. (Z:'a recspace->'b->bool) x y` MP_TAC THENL [ W(MP_TAC o HO_PART_MATCH rand CONSTR_IND o snd) THEN DISCH_THEN MATCH_MP_TAC THEN CONJ_TAC THEN REPEAT GEN_TAC THENL [ FIRST_ASSUM (fn t => GEN_REWRITE_TAC BINDER_CONV [GSYM t]) THEN REWRITE_TAC[GSYM CONSTR_BOT, EXISTS_UNIQUE_REFL], DISCH_THEN(MP_TAC o SIMP_RULE bool_ss [EXISTS_UNIQUE_THM,FORALL_AND_THM]) THEN DISCH_THEN(CONJUNCTS_THEN2 MP_TAC ASSUME_TAC) THEN DISCH_THEN(MP_TAC o SIMP_RULE bool_ss [SKOLEM_THM]) THEN DISCH_THEN(Q.X_CHOOSE_THEN `y:num->'b` ASSUME_TAC) THEN REWRITE_TAC[EXISTS_UNIQUE_THM] THEN FIRST_ASSUM(fn th => CHANGED_TAC(ONCE_REWRITE_TAC[GSYM th])) THEN CONJ_TAC THENL [ Q.EXISTS_TAC `(Fn:num->'a->(num->'a recspace)->(num->'b)->'b) c i r y` THEN REWRITE_TAC[CONSTR_BOT, CONSTR_INJ, GSYM CONJ_ASSOC] THEN SIMP_TAC hol_ss [RIGHT_EXISTS_AND_THM] THEN Q.EXISTS_TAC `y:num->'b` THEN ASM_REWRITE_TAC[], REWRITE_TAC[CONSTR_BOT, CONSTR_INJ, GSYM CONJ_ASSOC] THEN SIMP_TAC hol_ss [RIGHT_EXISTS_AND_THM] THEN REPEAT STRIP_TAC THEN ASM_REWRITE_TAC[] THEN REPEAT AP_TERM_TAC THEN ONCE_REWRITE_TAC[FUN_EQ_THM] THEN Q.X_GEN_TAC `w:num` THEN FIRST_ASSUM MATCH_MP_TAC THEN Q.EXISTS_TAC `w` THEN ASM_REWRITE_TAC[] ] ], REWRITE_TAC[UNIQUE_SKOLEM_ALT] THEN DISCH_THEN(Q.X_CHOOSE_THEN `fn:'a recspace->'b` (ASSUME_TAC o GSYM)) THEN Q.EXISTS_TAC `fn:'a recspace->'b` THEN ASM_REWRITE_TAC[] THEN REPEAT GEN_TAC THEN FIRST_ASSUM MATCH_MP_TAC THEN GEN_TAC THEN FIRST_ASSUM(fn th => GEN_REWRITE_TAC I [GSYM th]) THEN SIMP_TAC bool_ss [] ]); (* ------------------------------------------------------------------------- *) (* The following is useful for coding up functions casewise. *) (* ------------------------------------------------------------------------- *) val FCONS = new_recursive_definition { rec_axiom = num_Axiom, name = "FCONS", def = ``(!a f. FCONS (a:'a) f 0 = a) /\ (!a f n. FCONS (a:'a) f (SUC n) = f n)``}; val FCONS_UNDO = prove( ``!f:num->'a. f = FCONS (f 0) (f o SUC)``, GEN_TAC THEN REWRITE_TAC[FUN_EQ_THM] THEN numLib.INDUCT_TAC THEN REWRITE_TAC[FCONS, combinTheory.o_THM]); val FNIL = new_definition("FNIL", ``FNIL (n:num) = (ARB:'a)``); (*---------------------------------------------------------------------------*) (* Destructor-style FCONS equation *) (*---------------------------------------------------------------------------*) val FCONS_DEST = Q.store_thm ("FCONS_DEST", `FCONS a f n = if n = 0 then a else f (n-1)`, BasicProvers.Cases_on `n` THEN ASM_SIMP_TAC numLib.arith_ss [FCONS]); (* ------------------------------------------------------------------------- *) (* Convenient definitions for type isomorphism. *) (* ------------------------------------------------------------------------- *) val ISO = new_definition( "ISO", Term`ISO (f:'a->'b) (g:'b->'a) <=> (!x. f(g x) = x) /\ (!y. g(f y) = y)`); (* ------------------------------------------------------------------------- *) (* Composition theorems. *) (* ------------------------------------------------------------------------- *) val ISO_REFL = store_thm( "ISO_REFL", Term`ISO (\x:'a. x) (\x. x)`, SIMP_TAC bool_ss [ISO]); open mesonLib val ISO_FUN = store_thm( "ISO_FUN", Term`ISO (f:'a->'c) f' /\ ISO (g:'b->'d) g' ==> ISO (\h a'. g(h(f' a'))) (\h a. g'(h(f a)))`, REWRITE_TAC [ISO] THEN SIMP_TAC bool_ss [ISO, FUN_EQ_THM]); (* bug in the simplifier requires first rewrite to be performed *) (* ------------------------------------------------------------------------- *) (* The use we make of isomorphism when finished. *) (* ------------------------------------------------------------------------- *) val ISO_USAGE = store_thm( "ISO_USAGE", Term`ISO f g ==> (!P. (!x. P x) = (!x. P(g x))) /\ (!P. (?x. P x) = (?x. P(g x))) /\ (!a b. (a = g b) = (f a = b))`, SIMP_TAC bool_ss [ISO, FUN_EQ_THM] THEN MESON_TAC[]); (* ---------------------------------------------------------------------- Remove constants from top-level name-space ---------------------------------------------------------------------- *) val _ = app (fn s => remove_ovl_mapping s {Name = s, Thy = "ind_type"}) ["NUMPAIR", "NUMSUM", "INJN", "INJA", "INJF", "INJP", "FCONS", "ZCONSTR", "ZBOT", "BOTTOM", "CONSTR", "FNIL", "ISO"] local open OpenTheoryMap in val ns = ["HOL4","Datatype"] fun c x = OpenTheory_const_name{const={Thy="ind_type",Name=x},name=(ns,x)} val _ = OpenTheory_tyop_name{tyop={Thy="ind_type",Tyop="recspace"},name=(ns,"recspace")} val _ = c "CONSTR" val _ = c "FCONS" val _ = c "FNIL" val _ = c "BOTTOM" end val _ = export_theory();