(* Title: ZF/UNITY/GenPrefix.thy Author: Sidi O Ehmety, Cambridge University Computer Laboratory Copyright 2001 University of Cambridge :gen_prefix(r) if ys = xs' @ zs where length(xs) = length(xs') and corresponding elements of xs, xs' are pairwise related by r Based on Lex/Prefix *) section\Charpentier's Generalized Prefix Relation\ theory GenPrefix imports ZF begin definition (*really belongs in ZF/Trancl*) part_order :: "[i, i] => o" where "part_order(A, r) == refl(A,r) & trans[A](r) & antisym(r)" consts gen_prefix :: "[i, i] => i" inductive (* Parameter A is the domain of zs's elements *) domains "gen_prefix(A, r)" \ "list(A)*list(A)" intros Nil: "<[],[]>:gen_prefix(A, r)" prepend: "[| :gen_prefix(A, r); :r; x \ A; y \ A |] ==> : gen_prefix(A, r)" append: "[| :gen_prefix(A, r); zs:list(A) |] ==> :gen_prefix(A, r)" type_intros app_type list.Nil list.Cons definition prefix :: "i=>i" where "prefix(A) == gen_prefix(A, id(A))" definition strict_prefix :: "i=>i" where "strict_prefix(A) == prefix(A) - id(list(A))" (* less or equal and greater or equal over prefixes *) abbreviation pfixLe :: "[i, i] => o" (infixl "pfixLe" 50) where "xs pfixLe ys == :gen_prefix(nat, Le)" abbreviation pfixGe :: "[i, i] => o" (infixl "pfixGe" 50) where "xs pfixGe ys == :gen_prefix(nat, Ge)" lemma reflD: "[| refl(A, r); x \ A |] ==> :r" apply (unfold refl_def, auto) done (*** preliminary lemmas ***) lemma Nil_gen_prefix: "xs \ list(A) ==> <[], xs> \ gen_prefix(A, r)" by (drule gen_prefix.append [OF gen_prefix.Nil], simp) declare Nil_gen_prefix [simp] lemma gen_prefix_length_le: " \ gen_prefix(A, r) ==> length(xs) \ length(ys)" apply (erule gen_prefix.induct) apply (subgoal_tac [3] "ys \ list (A) ") apply (auto dest: gen_prefix.dom_subset [THEN subsetD] intro: le_trans simp add: length_app) done lemma Cons_gen_prefix_aux: "[| \ gen_prefix(A, r) |] ==> (\x xs. x \ A \ xs'= Cons(x,xs) \ (\y ys. y \ A & ys' = Cons(y,ys) & :r & \ gen_prefix(A, r)))" apply (erule gen_prefix.induct) prefer 3 apply (force intro: gen_prefix.append, auto) done lemma Cons_gen_prefixE: "[| \ gen_prefix(A, r); !!y ys. [|zs = Cons(y, ys); y \ A; x \ A; :r; \ gen_prefix(A, r) |] ==> P |] ==> P" apply (frule gen_prefix.dom_subset [THEN subsetD], auto) apply (blast dest: Cons_gen_prefix_aux) done declare Cons_gen_prefixE [elim!] lemma Cons_gen_prefix_Cons: "( \ gen_prefix(A, r)) \ (x \ A & y \ A & :r & \ gen_prefix(A, r))" apply (auto intro: gen_prefix.prepend) done declare Cons_gen_prefix_Cons [iff] (** Monotonicity of gen_prefix **) lemma gen_prefix_mono2: "r<=s ==> gen_prefix(A, r) \ gen_prefix(A, s)" apply clarify apply (frule gen_prefix.dom_subset [THEN subsetD], clarify) apply (erule rev_mp) apply (erule gen_prefix.induct) apply (auto intro: gen_prefix.append) done lemma gen_prefix_mono1: "A<=B ==>gen_prefix(A, r) \ gen_prefix(B, r)" apply clarify apply (frule gen_prefix.dom_subset [THEN subsetD], clarify) apply (erule rev_mp) apply (erule_tac P = "y \ list (A) " in rev_mp) apply (erule_tac P = "xa \ list (A) " in rev_mp) apply (erule gen_prefix.induct) apply (simp (no_asm_simp)) apply clarify apply (erule ConsE)+ apply (auto dest: gen_prefix.dom_subset [THEN subsetD] intro: gen_prefix.append list_mono [THEN subsetD]) done lemma gen_prefix_mono: "[| A \ B; r \ s |] ==> gen_prefix(A, r) \ gen_prefix(B, s)" apply (rule subset_trans) apply (rule gen_prefix_mono1) apply (rule_tac [2] gen_prefix_mono2, auto) done (*** gen_prefix order ***) (* reflexivity *) lemma refl_gen_prefix: "refl(A, r) ==> refl(list(A), gen_prefix(A, r))" apply (unfold refl_def, auto) apply (induct_tac "x", auto) done declare refl_gen_prefix [THEN reflD, simp] (* Transitivity *) (* A lemma for proving gen_prefix_trans_comp *) lemma append_gen_prefix [rule_format (no_asm)]: "xs \ list(A) ==> \zs. \ gen_prefix(A, r) \ : gen_prefix(A, r)" apply (erule list.induct) apply (auto dest: gen_prefix.dom_subset [THEN subsetD]) done (* Lemma proving transitivity and more*) lemma gen_prefix_trans_comp [rule_format (no_asm)]: ": gen_prefix(A, r) ==> (\z \ list(A). \ gen_prefix(A, s)\ \ gen_prefix(A, s O r))" apply (erule gen_prefix.induct) apply (auto elim: ConsE simp add: Nil_gen_prefix) apply (subgoal_tac "ys \ list (A) ") prefer 2 apply (blast dest: gen_prefix.dom_subset [THEN subsetD]) apply (drule_tac xs = ys and r = s in append_gen_prefix, auto) done lemma trans_comp_subset: "trans(r) ==> r O r \ r" by (auto dest: transD) lemma trans_gen_prefix: "trans(r) ==> trans(gen_prefix(A,r))" apply (simp (no_asm) add: trans_def) apply clarify apply (rule trans_comp_subset [THEN gen_prefix_mono2, THEN subsetD], assumption) apply (rule gen_prefix_trans_comp) apply (auto dest: gen_prefix.dom_subset [THEN subsetD]) done lemma trans_on_gen_prefix: "trans(r) ==> trans[list(A)](gen_prefix(A, r))" apply (drule_tac A = A in trans_gen_prefix) apply (unfold trans_def trans_on_def, blast) done lemma prefix_gen_prefix_trans: "[| \ prefix(A); \ gen_prefix(A, r); r<=A*A |] ==> \ gen_prefix(A, r)" apply (unfold prefix_def) apply (rule_tac P = "%r. \ gen_prefix (A, r) " in right_comp_id [THEN subst]) apply (blast dest: gen_prefix_trans_comp gen_prefix.dom_subset [THEN subsetD])+ done lemma gen_prefix_prefix_trans: "[| \ gen_prefix(A,r); \ prefix(A); r<=A*A |] ==> \ gen_prefix(A, r)" apply (unfold prefix_def) apply (rule_tac P = "%r. \ gen_prefix (A, r) " in left_comp_id [THEN subst]) apply (blast dest: gen_prefix_trans_comp gen_prefix.dom_subset [THEN subsetD])+ done (** Antisymmetry **) lemma nat_le_lemma [rule_format]: "n \ nat ==> \b \ nat. n #+ b \ n \ b = 0" by (induct_tac "n", auto) lemma antisym_gen_prefix: "antisym(r) ==> antisym(gen_prefix(A, r))" apply (simp (no_asm) add: antisym_def) apply (rule impI [THEN allI, THEN allI]) apply (erule gen_prefix.induct, blast) apply (simp add: antisym_def, blast) txt\append case is hardest\ apply clarify apply (subgoal_tac "length (zs) = 0") apply (subgoal_tac "ys \ list (A) ") prefer 2 apply (blast dest: gen_prefix.dom_subset [THEN subsetD]) apply (drule_tac psi = " \ gen_prefix (A,r) " in asm_rl) apply simp apply (subgoal_tac "length (ys @ zs) = length (ys) #+ length (zs) &ys \ list (A) &xs \ list (A) ") prefer 2 apply (blast intro: length_app dest: gen_prefix.dom_subset [THEN subsetD]) apply (drule gen_prefix_length_le)+ apply clarify apply simp apply (drule_tac j = "length (xs) " in le_trans) apply blast apply (auto intro: nat_le_lemma) done (*** recursion equations ***) lemma gen_prefix_Nil: "xs \ list(A) ==> \ gen_prefix(A,r) \ (xs = [])" by (induct_tac "xs", auto) declare gen_prefix_Nil [simp] lemma same_gen_prefix_gen_prefix: "[| refl(A, r); xs \ list(A) |] ==> : gen_prefix(A, r) \ \ gen_prefix(A, r)" apply (unfold refl_def) apply (induct_tac "xs") apply (simp_all (no_asm_simp)) done declare same_gen_prefix_gen_prefix [simp] lemma gen_prefix_Cons: "[| xs \ list(A); ys \ list(A); y \ A |] ==> \ gen_prefix(A,r) \ (xs=[] | (\z zs. xs=Cons(z,zs) & z \ A & :r & \ gen_prefix(A,r)))" apply (induct_tac "xs", auto) done lemma gen_prefix_take_append: "[| refl(A,r); \ gen_prefix(A, r); zs \ list(A) |] ==> \ gen_prefix(A, r)" apply (erule gen_prefix.induct) apply (simp (no_asm_simp)) apply (frule_tac [!] gen_prefix.dom_subset [THEN subsetD], auto) apply (frule gen_prefix_length_le) apply (subgoal_tac "take (length (xs), ys) \ list (A) ") apply (simp_all (no_asm_simp) add: diff_is_0_iff [THEN iffD2] take_type) done lemma gen_prefix_append_both: "[| refl(A, r); \ gen_prefix(A,r); length(xs) = length(ys); zs \ list(A) |] ==> \ gen_prefix(A, r)" apply (drule_tac zs = zs in gen_prefix_take_append, assumption+) apply (subgoal_tac "take (length (xs), ys) =ys") apply (auto intro!: take_all dest: gen_prefix.dom_subset [THEN subsetD]) done (*NOT suitable for rewriting since [y] has the form y#ys*) lemma append_cons_conv: "xs \ list(A) ==> xs @ Cons(y, ys) = (xs @ [y]) @ ys" by (auto simp add: app_assoc) lemma append_one_gen_prefix_lemma [rule_format]: "[| \ gen_prefix(A, r); refl(A, r) |] ==> length(xs) < length(ys) \ \ gen_prefix(A, r)" apply (erule gen_prefix.induct, blast) apply (frule gen_prefix.dom_subset [THEN subsetD], clarify) apply (simp_all add: length_type) (* Append case is hardest *) apply (frule gen_prefix_length_le [THEN le_iff [THEN iffD1]]) apply (frule gen_prefix.dom_subset [THEN subsetD], clarify) apply (subgoal_tac "length (xs) :nat&length (ys) :nat &length (zs) :nat") prefer 2 apply (blast intro: length_type, clarify) apply (simp_all add: nth_append length_type length_app) apply (rule conjI) apply (blast intro: gen_prefix.append) apply (erule_tac V = "length (xs) < length (ys) \u" for u in thin_rl) apply (erule_tac a = zs in list.cases, auto) apply (rule_tac P1 = "%x. :w" for u v w in nat_diff_split [THEN iffD2]) apply auto apply (simplesubst append_cons_conv) apply (rule_tac [2] gen_prefix.append) apply (auto elim: ConsE simp add: gen_prefix_append_both) done lemma append_one_gen_prefix: "[| : gen_prefix(A, r); length(xs) < length(ys); refl(A, r) |] ==> \ gen_prefix(A, r)" apply (blast intro: append_one_gen_prefix_lemma) done (** Proving the equivalence with Charpentier's definition **) lemma gen_prefix_imp_nth_lemma [rule_format]: "xs \ list(A) ==> \ys \ list(A). \i \ nat. i < length(xs) \ : gen_prefix(A, r) \ :r" apply (induct_tac "xs", simp, clarify) apply simp apply (erule natE, auto) done lemma gen_prefix_imp_nth: "[| \ gen_prefix(A,r); i < length(xs)|] ==> :r" apply (cut_tac A = A in gen_prefix.dom_subset) apply (rule gen_prefix_imp_nth_lemma) apply (auto simp add: lt_nat_in_nat) done lemma nth_imp_gen_prefix [rule_format]: "xs \ list(A) ==> \ys \ list(A). length(xs) \ length(ys) \ (\i. i < length(xs) \ :r) \ \ gen_prefix(A, r)" apply (induct_tac "xs") apply (simp_all (no_asm_simp)) apply clarify apply (erule_tac a = ys in list.cases, simp) apply (force intro!: nat_0_le simp add: lt_nat_in_nat) done lemma gen_prefix_iff_nth: "( \ gen_prefix(A,r)) \ (xs \ list(A) & ys \ list(A) & length(xs) \ length(ys) & (\i. i < length(xs) \ : r))" apply (rule iffI) apply (frule gen_prefix.dom_subset [THEN subsetD]) apply (frule gen_prefix_length_le, auto) apply (rule_tac [2] nth_imp_gen_prefix) apply (drule gen_prefix_imp_nth) apply (auto simp add: lt_nat_in_nat) done (** prefix is a partial order: **) lemma refl_prefix: "refl(list(A), prefix(A))" apply (unfold prefix_def) apply (rule refl_gen_prefix) apply (auto simp add: refl_def) done declare refl_prefix [THEN reflD, simp] lemma trans_prefix: "trans(prefix(A))" apply (unfold prefix_def) apply (rule trans_gen_prefix) apply (auto simp add: trans_def) done lemmas prefix_trans = trans_prefix [THEN transD] lemma trans_on_prefix: "trans[list(A)](prefix(A))" apply (unfold prefix_def) apply (rule trans_on_gen_prefix) apply (auto simp add: trans_def) done lemmas prefix_trans_on = trans_on_prefix [THEN trans_onD] (* Monotonicity of "set" operator WRT prefix *) lemma set_of_list_prefix_mono: " \ prefix(A) ==> set_of_list(xs) \ set_of_list(ys)" apply (unfold prefix_def) apply (erule gen_prefix.induct) apply (subgoal_tac [3] "xs \ list (A) &ys \ list (A) ") prefer 4 apply (blast dest: gen_prefix.dom_subset [THEN subsetD]) apply (auto simp add: set_of_list_append) done (** recursion equations **) lemma Nil_prefix: "xs \ list(A) ==> <[],xs> \ prefix(A)" apply (unfold prefix_def) apply (simp (no_asm_simp) add: Nil_gen_prefix) done declare Nil_prefix [simp] lemma prefix_Nil: " \ prefix(A) \ (xs = [])" apply (unfold prefix_def, auto) apply (frule gen_prefix.dom_subset [THEN subsetD]) apply (drule_tac psi = " \ gen_prefix (A, id (A))" in asm_rl) apply (simp add: gen_prefix_Nil) done declare prefix_Nil [iff] lemma Cons_prefix_Cons: " \ prefix(A) \ (x=y & \ prefix(A) & y \ A)" apply (unfold prefix_def, auto) done declare Cons_prefix_Cons [iff] lemma same_prefix_prefix: "xs \ list(A)==> \ prefix(A) \ ( \ prefix(A))" apply (unfold prefix_def) apply (subgoal_tac "refl (A,id (A))") apply (simp (no_asm_simp)) apply (auto simp add: refl_def) done declare same_prefix_prefix [simp] lemma same_prefix_prefix_Nil: "xs \ list(A) ==> \ prefix(A) \ ( \ prefix(A))" apply (rule_tac P = "%x. :v \ w(x)" for u v w in app_right_Nil [THEN subst]) apply (rule_tac [2] same_prefix_prefix, auto) done declare same_prefix_prefix_Nil [simp] lemma prefix_appendI: "[| \ prefix(A); zs \ list(A) |] ==> \ prefix(A)" apply (unfold prefix_def) apply (erule gen_prefix.append, assumption) done declare prefix_appendI [simp] lemma prefix_Cons: "[| xs \ list(A); ys \ list(A); y \ A |] ==> \ prefix(A) \ (xs=[] | (\zs. xs=Cons(y,zs) & \ prefix(A)))" apply (unfold prefix_def) apply (auto simp add: gen_prefix_Cons) done lemma append_one_prefix: "[| \ prefix(A); length(xs) < length(ys) |] ==> \ prefix(A)" apply (unfold prefix_def) apply (subgoal_tac "refl (A, id (A))") apply (simp (no_asm_simp) add: append_one_gen_prefix) apply (auto simp add: refl_def) done lemma prefix_length_le: " \ prefix(A) ==> length(xs) \ length(ys)" apply (unfold prefix_def) apply (blast dest: gen_prefix_length_le) done lemma prefix_type: "prefix(A)<=list(A)*list(A)" apply (unfold prefix_def) apply (blast intro!: gen_prefix.dom_subset) done lemma strict_prefix_type: "strict_prefix(A) \ list(A)*list(A)" apply (unfold strict_prefix_def) apply (blast intro!: prefix_type [THEN subsetD]) done lemma strict_prefix_length_lt_aux: " \ prefix(A) ==> xs\ys \ length(xs) < length(ys)" apply (unfold prefix_def) apply (erule gen_prefix.induct, clarify) apply (subgoal_tac [!] "ys \ list(A) & xs \ list(A)") apply (auto dest: gen_prefix.dom_subset [THEN subsetD] simp add: length_type) apply (subgoal_tac "length (zs) =0") apply (drule_tac [2] not_lt_imp_le) apply (rule_tac [5] j = "length (ys) " in lt_trans2) apply auto done lemma strict_prefix_length_lt: ":strict_prefix(A) ==> length(xs) < length(ys)" apply (unfold strict_prefix_def) apply (rule strict_prefix_length_lt_aux [THEN mp]) apply (auto dest: prefix_type [THEN subsetD]) done (*Equivalence to the definition used in Lex/Prefix.thy*) lemma prefix_iff: " \ prefix(A) \ (\ys \ list(A). zs = xs@ys) & xs \ list(A)" apply (unfold prefix_def) apply (auto simp add: gen_prefix_iff_nth lt_nat_in_nat nth_append nth_type app_type length_app) apply (subgoal_tac "drop (length (xs), zs) \ list (A) ") apply (rule_tac x = "drop (length (xs), zs) " in bexI) apply safe prefer 2 apply (simp add: length_type drop_type) apply (rule nth_equalityI) apply (simp_all (no_asm_simp) add: nth_append app_type drop_type length_app length_drop) apply (rule nat_diff_split [THEN iffD2], simp_all, clarify) apply (drule_tac i = "length (zs) " in leI) apply (force simp add: le_subset_iff, safe) apply (subgoal_tac "length (xs) #+ (i #- length (xs)) = i") apply (subst nth_drop) apply (simp_all (no_asm_simp) add: leI split: nat_diff_split) done lemma prefix_snoc: "[|xs \ list(A); ys \ list(A); y \ A |] ==> \ prefix(A) \ (xs = ys@[y] | \ prefix(A))" apply (simp (no_asm) add: prefix_iff) apply (rule iffI, clarify) apply (erule_tac xs = ysa in rev_list_elim, simp) apply (simp add: app_type app_assoc [symmetric]) apply (auto simp add: app_assoc app_type) done declare prefix_snoc [simp] lemma prefix_append_iff [rule_format]: "zs \ list(A) ==> \xs \ list(A). \ys \ list(A). ( \ prefix(A)) \ ( \ prefix(A) | (\us. xs = ys@us & \ prefix(A)))" apply (erule list_append_induct, force, clarify) apply (rule iffI) apply (simp add: add: app_assoc [symmetric]) apply (erule disjE) apply (rule disjI2) apply (rule_tac x = "y @ [x]" in exI) apply (simp add: add: app_assoc [symmetric], force+) done (*Although the prefix ordering is not linear, the prefixes of a list are linearly ordered.*) lemma common_prefix_linear_lemma [rule_format]: "[| zs \ list(A); xs \ list(A); ys \ list(A) |] ==> \ prefix(A) \ \ prefix(A) \ \ prefix(A) | \ prefix(A)" apply (erule list_append_induct, auto) done lemma common_prefix_linear: "[| \ prefix(A); \ prefix(A) |] ==> \ prefix(A) | \ prefix(A)" apply (cut_tac prefix_type) apply (blast del: disjCI intro: common_prefix_linear_lemma) done (*** pfixLe, pfixGe \ properties inherited from the translations ***) (** pfixLe **) lemma refl_Le: "refl(nat,Le)" apply (unfold refl_def, auto) done declare refl_Le [simp] lemma antisym_Le: "antisym(Le)" apply (unfold antisym_def) apply (auto intro: le_anti_sym) done declare antisym_Le [simp] lemma trans_on_Le: "trans[nat](Le)" apply (unfold trans_on_def, auto) apply (blast intro: le_trans) done declare trans_on_Le [simp] lemma trans_Le: "trans(Le)" apply (unfold trans_def, auto) apply (blast intro: le_trans) done declare trans_Le [simp] lemma part_order_Le: "part_order(nat,Le)" by (unfold part_order_def, auto) declare part_order_Le [simp] lemma pfixLe_refl: "x \ list(nat) ==> x pfixLe x" by (blast intro: refl_gen_prefix [THEN reflD] refl_Le) declare pfixLe_refl [simp] lemma pfixLe_trans: "[| x pfixLe y; y pfixLe z |] ==> x pfixLe z" by (blast intro: trans_gen_prefix [THEN transD] trans_Le) lemma pfixLe_antisym: "[| x pfixLe y; y pfixLe x |] ==> x = y" by (blast intro: antisym_gen_prefix [THEN antisymE] antisym_Le) lemma prefix_imp_pfixLe: ":prefix(nat)==> xs pfixLe ys" apply (unfold prefix_def) apply (rule gen_prefix_mono [THEN subsetD], auto) done lemma refl_Ge: "refl(nat, Ge)" by (unfold refl_def Ge_def, auto) declare refl_Ge [iff] lemma antisym_Ge: "antisym(Ge)" apply (unfold antisym_def Ge_def) apply (auto intro: le_anti_sym) done declare antisym_Ge [iff] lemma trans_Ge: "trans(Ge)" apply (unfold trans_def Ge_def) apply (auto intro: le_trans) done declare trans_Ge [iff] lemma pfixGe_refl: "x \ list(nat) ==> x pfixGe x" by (blast intro: refl_gen_prefix [THEN reflD]) declare pfixGe_refl [simp] lemma pfixGe_trans: "[| x pfixGe y; y pfixGe z |] ==> x pfixGe z" by (blast intro: trans_gen_prefix [THEN transD]) lemma pfixGe_antisym: "[| x pfixGe y; y pfixGe x |] ==> x = y" by (blast intro: antisym_gen_prefix [THEN antisymE]) lemma prefix_imp_pfixGe: ":prefix(nat) ==> xs pfixGe ys" apply (unfold prefix_def Ge_def) apply (rule gen_prefix_mono [THEN subsetD], auto) done (* Added by Sidi \ prefix and take *) lemma prefix_imp_take: " \ prefix(A) ==> xs = take(length(xs), ys)" apply (unfold prefix_def) apply (erule gen_prefix.induct) apply (subgoal_tac [3] "length (xs) :nat") apply (auto dest: gen_prefix.dom_subset [THEN subsetD] simp add: length_type) apply (frule gen_prefix.dom_subset [THEN subsetD]) apply (frule gen_prefix_length_le) apply (auto simp add: take_append) apply (subgoal_tac "length (xs) #- length (ys) =0") apply (simp_all (no_asm_simp) add: diff_is_0_iff) done lemma prefix_length_equal: "[| \ prefix(A); length(xs)=length(ys)|] ==> xs = ys" apply (cut_tac A = A in prefix_type) apply (drule subsetD, auto) apply (drule prefix_imp_take) apply (erule trans, simp) done lemma prefix_length_le_equal: "[| \ prefix(A); length(ys) \ length(xs)|] ==> xs = ys" by (blast intro: prefix_length_equal le_anti_sym prefix_length_le) lemma take_prefix [rule_format]: "xs \ list(A) ==> \n \ nat. \ prefix(A)" apply (unfold prefix_def) apply (erule list.induct, simp, clarify) apply (erule natE, auto) done lemma prefix_take_iff: " \ prefix(A) \ (xs=take(length(xs), ys) & xs \ list(A) & ys \ list(A))" apply (rule iffI) apply (frule prefix_type [THEN subsetD]) apply (blast intro: prefix_imp_take, clarify) apply (erule ssubst) apply (blast intro: take_prefix length_type) done lemma prefix_imp_nth: "[| \ prefix(A); i < length(xs)|] ==> nth(i,xs) = nth(i,ys)" by (auto dest!: gen_prefix_imp_nth simp add: prefix_def) lemma nth_imp_prefix: "[|xs \ list(A); ys \ list(A); length(xs) \ length(ys); !!i. i < length(xs) ==> nth(i, xs) = nth(i,ys)|] ==> \ prefix(A)" apply (auto simp add: prefix_def nth_imp_gen_prefix) apply (auto intro!: nth_imp_gen_prefix simp add: prefix_def) apply (blast intro: nth_type lt_trans2) done lemma length_le_prefix_imp_prefix: "[|length(xs) \ length(ys); \ prefix(A); \ prefix(A)|] ==> \ prefix(A)" apply (cut_tac A = A in prefix_type) apply (rule nth_imp_prefix, blast, blast) apply assumption apply (rule_tac b = "nth (i,zs)" in trans) apply (blast intro: prefix_imp_nth) apply (blast intro: sym prefix_imp_nth prefix_length_le lt_trans2) done end