(* Title: HOL/UNITY/Union.thy Author: Lawrence C Paulson, Cambridge University Computer Laboratory Copyright 1998 University of Cambridge Partly from Misra's Chapter 5: Asynchronous Compositions of Programs. *) section\Unions of Programs\ theory Union imports SubstAx FP begin (*FIXME: conjoin Init F \ Init G \ {} *) definition ok :: "['a program, 'a program] => bool" (infixl "ok" 65) where "F ok G == Acts F \ AllowedActs G & Acts G \ AllowedActs F" (*FIXME: conjoin (\i \ I. Init (F i)) \ {} *) definition OK :: "['a set, 'a => 'b program] => bool" where "OK I F = (\i \ I. \j \ I-{i}. Acts (F i) \ AllowedActs (F j))" definition JOIN :: "['a set, 'a => 'b program] => 'b program" where "JOIN I F = mk_program (\i \ I. Init (F i), \i \ I. Acts (F i), \i \ I. AllowedActs (F i))" definition Join :: "['a program, 'a program] => 'a program" (infixl "\" 65) where "F \ G = mk_program (Init F \ Init G, Acts F \ Acts G, AllowedActs F \ AllowedActs G)" definition SKIP :: "'a program" ("\") where "\ = mk_program (UNIV, {}, UNIV)" (*Characterizes safety properties. Used with specifying Allowed*) definition safety_prop :: "'a program set => bool" where "safety_prop X \ SKIP \ X \ (\G. Acts G \ UNION X Acts \ G \ X)" syntax "_JOIN1" :: "[pttrns, 'b set] => 'b set" ("(3\_./ _)" 10) "_JOIN" :: "[pttrn, 'a set, 'b set] => 'b set" ("(3\_\_./ _)" 10) translations "\x \ A. B" == "CONST JOIN A (\x. B)" "\x y. B" == "\x. \y. B" "\x. B" == "CONST JOIN (CONST UNIV) (\x. B)" subsection\SKIP\ lemma Init_SKIP [simp]: "Init SKIP = UNIV" by (simp add: SKIP_def) lemma Acts_SKIP [simp]: "Acts SKIP = {Id}" by (simp add: SKIP_def) lemma AllowedActs_SKIP [simp]: "AllowedActs SKIP = UNIV" by (auto simp add: SKIP_def) lemma reachable_SKIP [simp]: "reachable SKIP = UNIV" by (force elim: reachable.induct intro: reachable.intros) subsection\SKIP and safety properties\ lemma SKIP_in_constrains_iff [iff]: "(SKIP \ A co B) = (A \ B)" by (unfold constrains_def, auto) lemma SKIP_in_Constrains_iff [iff]: "(SKIP \ A Co B) = (A \ B)" by (unfold Constrains_def, auto) lemma SKIP_in_stable [iff]: "SKIP \ stable A" by (unfold stable_def, auto) declare SKIP_in_stable [THEN stable_imp_Stable, iff] subsection\Join\ lemma Init_Join [simp]: "Init (F\G) = Init F \ Init G" by (simp add: Join_def) lemma Acts_Join [simp]: "Acts (F\G) = Acts F \ Acts G" by (auto simp add: Join_def) lemma AllowedActs_Join [simp]: "AllowedActs (F\G) = AllowedActs F \ AllowedActs G" by (auto simp add: Join_def) subsection\JN\ lemma JN_empty [simp]: "(\i\{}. F i) = SKIP" by (unfold JOIN_def SKIP_def, auto) lemma JN_insert [simp]: "(\i \ insert a I. F i) = (F a)\(\i \ I. F i)" apply (rule program_equalityI) apply (auto simp add: JOIN_def Join_def) done lemma Init_JN [simp]: "Init (\i \ I. F i) = (\i \ I. Init (F i))" by (simp add: JOIN_def) lemma Acts_JN [simp]: "Acts (\i \ I. F i) = insert Id (\i \ I. Acts (F i))" by (auto simp add: JOIN_def) lemma AllowedActs_JN [simp]: "AllowedActs (\i \ I. F i) = (\i \ I. AllowedActs (F i))" by (auto simp add: JOIN_def) lemma JN_cong [cong]: "[| I=J; !!i. i \ J ==> F i = G i |] ==> (\i \ I. F i) = (\i \ J. G i)" by (simp add: JOIN_def) subsection\Algebraic laws\ lemma Join_commute: "F\G = G\F" by (simp add: Join_def Un_commute Int_commute) lemma Join_assoc: "(F\G)\H = F\(G\H)" by (simp add: Un_ac Join_def Int_assoc insert_absorb) lemma Join_left_commute: "A\(B\C) = B\(A\C)" by (simp add: Un_ac Int_ac Join_def insert_absorb) lemma Join_SKIP_left [simp]: "SKIP\F = F" apply (unfold Join_def SKIP_def) apply (rule program_equalityI) apply (simp_all (no_asm) add: insert_absorb) done lemma Join_SKIP_right [simp]: "F\SKIP = F" apply (unfold Join_def SKIP_def) apply (rule program_equalityI) apply (simp_all (no_asm) add: insert_absorb) done lemma Join_absorb [simp]: "F\F = F" apply (unfold Join_def) apply (rule program_equalityI, auto) done lemma Join_left_absorb: "F\(F\G) = F\G" apply (unfold Join_def) apply (rule program_equalityI, auto) done (*Join is an AC-operator*) lemmas Join_ac = Join_assoc Join_left_absorb Join_commute Join_left_commute subsection\Laws Governing \\\\ (*Also follows by JN_insert and insert_absorb, but the proof is longer*) lemma JN_absorb: "k \ I ==> F k\(\i \ I. F i) = (\i \ I. F i)" by (auto intro!: program_equalityI) lemma JN_Un: "(\i \ I \ J. F i) = ((\i \ I. F i)\(\i \ J. F i))" by (auto intro!: program_equalityI) lemma JN_constant: "(\i \ I. c) = (if I={} then SKIP else c)" by (rule program_equalityI, auto) lemma JN_Join_distrib: "(\i \ I. F i\G i) = (\i \ I. F i) \ (\i \ I. G i)" by (auto intro!: program_equalityI) lemma JN_Join_miniscope: "i \ I ==> (\i \ I. F i\G) = ((\i \ I. F i)\G)" by (auto simp add: JN_Join_distrib JN_constant) (*Used to prove guarantees_JN_I*) lemma JN_Join_diff: "i \ I ==> F i\JOIN (I - {i}) F = JOIN I F" apply (unfold JOIN_def Join_def) apply (rule program_equalityI, auto) done subsection\Safety: co, stable, FP\ (*Fails if I={} because it collapses to SKIP \ A co B, i.e. to A \ B. So an alternative precondition is A \ B, but most proofs using this rule require I to be nonempty for other reasons anyway.*) lemma JN_constrains: "i \ I ==> (\i \ I. F i) \ A co B = (\i \ I. F i \ A co B)" by (simp add: constrains_def JOIN_def, blast) lemma Join_constrains [simp]: "(F\G \ A co B) = (F \ A co B & G \ A co B)" by (auto simp add: constrains_def Join_def) lemma Join_unless [simp]: "(F\G \ A unless B) = (F \ A unless B & G \ A unless B)" by (simp add: unless_def) (*Analogous weak versions FAIL; see Misra [1994] 5.4.1, Substitution Axiom. reachable (F\G) could be much bigger than reachable F, reachable G *) lemma Join_constrains_weaken: "[| F \ A co A'; G \ B co B' |] ==> F\G \ (A \ B) co (A' \ B')" by (simp, blast intro: constrains_weaken) (*If I={}, it degenerates to SKIP \ UNIV co {}, which is false.*) lemma JN_constrains_weaken: "[| \i \ I. F i \ A i co A' i; i \ I |] ==> (\i \ I. F i) \ (\i \ I. A i) co (\i \ I. A' i)" apply (simp (no_asm_simp) add: JN_constrains) apply (blast intro: constrains_weaken) done lemma JN_stable: "(\i \ I. F i) \ stable A = (\i \ I. F i \ stable A)" by (simp add: stable_def constrains_def JOIN_def) lemma invariant_JN_I: "[| !!i. i \ I ==> F i \ invariant A; i \ I |] ==> (\i \ I. F i) \ invariant A" by (simp add: invariant_def JN_stable, blast) lemma Join_stable [simp]: "(F\G \ stable A) = (F \ stable A & G \ stable A)" by (simp add: stable_def) lemma Join_increasing [simp]: "(F\G \ increasing f) = (F \ increasing f & G \ increasing f)" by (auto simp add: increasing_def) lemma invariant_JoinI: "[| F \ invariant A; G \ invariant A |] ==> F\G \ invariant A" by (auto simp add: invariant_def) lemma FP_JN: "FP (\i \ I. F i) = (\i \ I. FP (F i))" by (simp add: FP_def JN_stable INTER_eq) subsection\Progress: transient, ensures\ lemma JN_transient: "i \ I ==> (\i \ I. F i) \ transient A = (\i \ I. F i \ transient A)" by (auto simp add: transient_def JOIN_def) lemma Join_transient [simp]: "F\G \ transient A = (F \ transient A | G \ transient A)" by (auto simp add: bex_Un transient_def Join_def) lemma Join_transient_I1: "F \ transient A ==> F\G \ transient A" by simp lemma Join_transient_I2: "G \ transient A ==> F\G \ transient A" by simp (*If I={} it degenerates to (SKIP \ A ensures B) = False, i.e. to ~(A \ B) *) lemma JN_ensures: "i \ I ==> (\i \ I. F i) \ A ensures B = ((\i \ I. F i \ (A-B) co (A \ B)) & (\i \ I. F i \ A ensures B))" by (auto simp add: ensures_def JN_constrains JN_transient) lemma Join_ensures: "F\G \ A ensures B = (F \ (A-B) co (A \ B) & G \ (A-B) co (A \ B) & (F \ transient (A-B) | G \ transient (A-B)))" by (auto simp add: ensures_def) lemma stable_Join_constrains: "[| F \ stable A; G \ A co A' |] ==> F\G \ A co A'" apply (unfold stable_def constrains_def Join_def) apply (simp add: ball_Un, blast) done (*Premise for G cannot use Always because F \ Stable A is weaker than G \ stable A *) lemma stable_Join_Always1: "[| F \ stable A; G \ invariant A |] ==> F\G \ Always A" apply (simp (no_asm_use) add: Always_def invariant_def Stable_eq_stable) apply (force intro: stable_Int) done (*As above, but exchanging the roles of F and G*) lemma stable_Join_Always2: "[| F \ invariant A; G \ stable A |] ==> F\G \ Always A" apply (subst Join_commute) apply (blast intro: stable_Join_Always1) done lemma stable_Join_ensures1: "[| F \ stable A; G \ A ensures B |] ==> F\G \ A ensures B" apply (simp (no_asm_simp) add: Join_ensures) apply (simp add: stable_def ensures_def) apply (erule constrains_weaken, auto) done (*As above, but exchanging the roles of F and G*) lemma stable_Join_ensures2: "[| F \ A ensures B; G \ stable A |] ==> F\G \ A ensures B" apply (subst Join_commute) apply (blast intro: stable_Join_ensures1) done subsection\the ok and OK relations\ lemma ok_SKIP1 [iff]: "SKIP ok F" by (simp add: ok_def) lemma ok_SKIP2 [iff]: "F ok SKIP" by (simp add: ok_def) lemma ok_Join_commute: "(F ok G & (F\G) ok H) = (G ok H & F ok (G\H))" by (auto simp add: ok_def) lemma ok_commute: "(F ok G) = (G ok F)" by (auto simp add: ok_def) lemmas ok_sym = ok_commute [THEN iffD1] lemma ok_iff_OK: "OK {(0::int,F),(1,G),(2,H)} snd = (F ok G & (F\G) ok H)" apply (simp add: Ball_def conj_disj_distribR ok_def Join_def OK_def insert_absorb all_conj_distrib) apply blast done lemma ok_Join_iff1 [iff]: "F ok (G\H) = (F ok G & F ok H)" by (auto simp add: ok_def) lemma ok_Join_iff2 [iff]: "(G\H) ok F = (G ok F & H ok F)" by (auto simp add: ok_def) (*useful? Not with the previous two around*) lemma ok_Join_commute_I: "[| F ok G; (F\G) ok H |] ==> F ok (G\H)" by (auto simp add: ok_def) lemma ok_JN_iff1 [iff]: "F ok (JOIN I G) = (\i \ I. F ok G i)" by (auto simp add: ok_def) lemma ok_JN_iff2 [iff]: "(JOIN I G) ok F = (\i \ I. G i ok F)" by (auto simp add: ok_def) lemma OK_iff_ok: "OK I F = (\i \ I. \j \ I-{i}. (F i) ok (F j))" by (auto simp add: ok_def OK_def) lemma OK_imp_ok: "[| OK I F; i \ I; j \ I; i \ j|] ==> (F i) ok (F j)" by (auto simp add: OK_iff_ok) subsection\Allowed\ lemma Allowed_SKIP [simp]: "Allowed SKIP = UNIV" by (auto simp add: Allowed_def) lemma Allowed_Join [simp]: "Allowed (F\G) = Allowed F \ Allowed G" by (auto simp add: Allowed_def) lemma Allowed_JN [simp]: "Allowed (JOIN I F) = (\i \ I. Allowed (F i))" by (auto simp add: Allowed_def) lemma ok_iff_Allowed: "F ok G = (F \ Allowed G & G \ Allowed F)" by (simp add: ok_def Allowed_def) lemma OK_iff_Allowed: "OK I F = (\i \ I. \j \ I-{i}. F i \ Allowed(F j))" by (auto simp add: OK_iff_ok ok_iff_Allowed) subsection\@{term safety_prop}, for reasoning about given instances of "ok"\ lemma safety_prop_Acts_iff: "safety_prop X ==> (Acts G \ insert Id (UNION X Acts)) = (G \ X)" by (auto simp add: safety_prop_def) lemma safety_prop_AllowedActs_iff_Allowed: "safety_prop X ==> (UNION X Acts \ AllowedActs F) = (X \ Allowed F)" by (auto simp add: Allowed_def safety_prop_Acts_iff [symmetric]) lemma Allowed_eq: "safety_prop X ==> Allowed (mk_program (init, acts, UNION X Acts)) = X" by (simp add: Allowed_def safety_prop_Acts_iff) (*For safety_prop to hold, the property must be satisfiable!*) lemma safety_prop_constrains [iff]: "safety_prop (A co B) = (A \ B)" by (simp add: safety_prop_def constrains_def, blast) lemma safety_prop_stable [iff]: "safety_prop (stable A)" by (simp add: stable_def) lemma safety_prop_Int [simp]: "safety_prop X \ safety_prop Y \ safety_prop (X \ Y)" proof (clarsimp simp add: safety_prop_def) fix G assume "\G. Acts G \ (\x\X. Acts x) \ G \ X" then have X: "Acts G \ (\x\X. Acts x) \ G \ X" by blast assume "\G. Acts G \ (\x\Y. Acts x) \ G \ Y" then have Y: "Acts G \ (\x\Y. Acts x) \ G \ Y" by blast assume Acts: "Acts G \ (\x\X \ Y. Acts x)" with X and Y show "G \ X \ G \ Y" by auto qed lemma safety_prop_INTER [simp]: "(\i. i \ I \ safety_prop (X i)) \ safety_prop (\i\I. X i)" proof (clarsimp simp add: safety_prop_def) fix G and i assume "\i. i \ I \ \ \ X i \ (\G. Acts G \ (\x\X i. Acts x) \ G \ X i)" then have *: "i \ I \ Acts G \ (\x\X i. Acts x) \ G \ X i" by blast assume "i \ I" moreover assume "Acts G \ (\j\\i\I. X i. Acts j)" ultimately have "Acts G \ (\i\X i. Acts i)" by auto with * \i \ I\ show "G \ X i" by blast qed lemma safety_prop_INTER1 [simp]: "(\i. safety_prop (X i)) \ safety_prop (\i. X i)" by (rule safety_prop_INTER) simp lemma def_prg_Allowed: "[| F == mk_program (init, acts, UNION X Acts) ; safety_prop X |] ==> Allowed F = X" by (simp add: Allowed_eq) lemma Allowed_totalize [simp]: "Allowed (totalize F) = Allowed F" by (simp add: Allowed_def) lemma def_total_prg_Allowed: "[| F = mk_total_program (init, acts, UNION X Acts) ; safety_prop X |] ==> Allowed F = X" by (simp add: mk_total_program_def def_prg_Allowed) lemma def_UNION_ok_iff: "[| F = mk_program(init,acts,UNION X Acts); safety_prop X |] ==> F ok G = (G \ X & acts \ AllowedActs G)" by (auto simp add: ok_def safety_prop_Acts_iff) text\The union of two total programs is total.\ lemma totalize_Join: "totalize F\totalize G = totalize (F\G)" by (simp add: program_equalityI totalize_def Join_def image_Un) lemma all_total_Join: "[|all_total F; all_total G|] ==> all_total (F\G)" by (simp add: all_total_def, blast) lemma totalize_JN: "(\i \ I. totalize (F i)) = totalize(\i \ I. F i)" by (simp add: program_equalityI totalize_def JOIN_def image_UN) lemma all_total_JN: "(!!i. i\I ==> all_total (F i)) ==> all_total(\i\I. F i)" by (simp add: all_total_iff_totalize totalize_JN [symmetric]) end