(* Title: HOL/UNITY/Transformers.thy Author: Lawrence C Paulson, Cambridge University Computer Laboratory Copyright 2003 University of Cambridge Predicate Transformers. From David Meier and Beverly Sanders, Composing Leads-to Properties Theoretical Computer Science 243:1-2 (2000), 339-361. David Meier, Progress Properties in Program Refinement and Parallel Composition Swiss Federal Institute of Technology Zurich (1997) *) section\Predicate Transformers\ theory Transformers imports Comp begin subsection\Defining the Predicate Transformers @{term wp}, @{term awp} and @{term wens}\ definition wp :: "[('a*'a) set, 'a set] => 'a set" where \ \Dijkstra's weakest-precondition operator (for an individual command)\ "wp act B == - (act\ `` (-B))" definition awp :: "['a program, 'a set] => 'a set" where \ \Dijkstra's weakest-precondition operator (for a program)\ "awp F B == (\act \ Acts F. wp act B)" definition wens :: "['a program, ('a*'a) set, 'a set] => 'a set" where \ \The weakest-ensures transformer\ "wens F act B == gfp(\X. (wp act B \ awp F (B \ X)) \ B)" text\The fundamental theorem for wp\ theorem wp_iff: "(A <= wp act B) = (act `` A <= B)" by (force simp add: wp_def) text\This lemma is a good deal more intuitive than the definition!\ lemma in_wp_iff: "(a \ wp act B) = (\x. (a,x) \ act --> x \ B)" by (simp add: wp_def, blast) lemma Compl_Domain_subset_wp: "- (Domain act) \ wp act B" by (force simp add: wp_def) lemma wp_empty [simp]: "wp act {} = - (Domain act)" by (force simp add: wp_def) text\The identity relation is the skip action\ lemma wp_Id [simp]: "wp Id B = B" by (simp add: wp_def) lemma wp_totalize_act: "wp (totalize_act act) B = (wp act B \ Domain act) \ (B - Domain act)" by (simp add: wp_def totalize_act_def, blast) lemma awp_subset: "(awp F A \ A)" by (force simp add: awp_def wp_def) lemma awp_Int_eq: "awp F (A\B) = awp F A \ awp F B" by (simp add: awp_def wp_def, blast) text\The fundamental theorem for awp\ theorem awp_iff_constrains: "(A <= awp F B) = (F \ A co B)" by (simp add: awp_def constrains_def wp_iff INT_subset_iff) lemma awp_iff_stable: "(A \ awp F A) = (F \ stable A)" by (simp add: awp_iff_constrains stable_def) lemma stable_imp_awp_ident: "F \ stable A ==> awp F A = A" apply (rule equalityI [OF awp_subset]) apply (simp add: awp_iff_stable) done lemma wp_mono: "(A \ B) ==> wp act A \ wp act B" by (simp add: wp_def, blast) lemma awp_mono: "(A \ B) ==> awp F A \ awp F B" by (simp add: awp_def wp_def, blast) lemma wens_unfold: "wens F act B = (wp act B \ awp F (B \ wens F act B)) \ B" apply (simp add: wens_def) apply (rule gfp_unfold) apply (simp add: mono_def wp_def awp_def, blast) done lemma wens_Id [simp]: "wens F Id B = B" by (simp add: wens_def gfp_def wp_def awp_def, blast) text\These two theorems justify the claim that @{term wens} returns the weakest assertion satisfying the ensures property\ lemma ensures_imp_wens: "F \ A ensures B ==> \act \ Acts F. A \ wens F act B" apply (simp add: wens_def ensures_def transient_def, clarify) apply (rule rev_bexI, assumption) apply (rule gfp_upperbound) apply (simp add: constrains_def awp_def wp_def, blast) done lemma wens_ensures: "act \ Acts F ==> F \ (wens F act B) ensures B" by (simp add: wens_def gfp_def constrains_def awp_def wp_def ensures_def transient_def, blast) text\These two results constitute assertion (4.13) of the thesis\ lemma wens_mono: "(A \ B) ==> wens F act A \ wens F act B" apply (simp add: wens_def wp_def awp_def) apply (rule gfp_mono, blast) done lemma wens_weakening: "B \ wens F act B" by (simp add: wens_def gfp_def, blast) text\Assertion (6), or 4.16 in the thesis\ lemma subset_wens: "A-B \ wp act B \ awp F (B \ A) ==> A \ wens F act B" apply (simp add: wens_def wp_def awp_def) apply (rule gfp_upperbound, blast) done text\Assertion 4.17 in the thesis\ lemma Diff_wens_constrains: "F \ (wens F act A - A) co wens F act A" by (simp add: wens_def gfp_def wp_def awp_def constrains_def, blast) \ \Proved instantly, yet remarkably fragile. If \Un_subset_iff\ is declared as an iff-rule, then it's almost impossible to prove. One proof is via \meson\ after expanding all definitions, but it's slow!\ text\Assertion (7): 4.18 in the thesis. NOTE that many of these results hold for an arbitrary action. We often do not require @{term "act \ Acts F"}\ lemma stable_wens: "F \ stable A ==> F \ stable (wens F act A)" apply (simp add: stable_def) apply (drule constrains_Un [OF Diff_wens_constrains [of F act A]]) apply (simp add: Un_Int_distrib2 Compl_partition2) apply (erule constrains_weaken, blast) apply (simp add: wens_weakening) done text\Assertion 4.20 in the thesis.\ lemma wens_Int_eq_lemma: "[|T-B \ awp F T; act \ Acts F|] ==> T \ wens F act B \ wens F act (T\B)" apply (rule subset_wens) apply (rule_tac P="\x. f x \ b" for f b in ssubst [OF wens_unfold]) apply (simp add: wp_def awp_def, blast) done text\Assertion (8): 4.21 in the thesis. Here we indeed require @{term "act \ Acts F"}\ lemma wens_Int_eq: "[|T-B \ awp F T; act \ Acts F|] ==> T \ wens F act B = T \ wens F act (T\B)" apply (rule equalityI) apply (simp_all add: Int_lower1) apply (rule wens_Int_eq_lemma, assumption+) apply (rule subset_trans [OF _ wens_mono [of "T\B" B]], auto) done subsection\Defining the Weakest Ensures Set\ inductive_set wens_set :: "['a program, 'a set] => 'a set set" for F :: "'a program" and B :: "'a set" where Basis: "B \ wens_set F B" | Wens: "[|X \ wens_set F B; act \ Acts F|] ==> wens F act X \ wens_set F B" | Union: "W \ {} ==> \U \ W. U \ wens_set F B ==> \W \ wens_set F B" lemma wens_set_imp_co: "A \ wens_set F B ==> F \ (A-B) co A" apply (erule wens_set.induct) apply (simp add: constrains_def) apply (drule_tac act1=act and A1=X in constrains_Un [OF Diff_wens_constrains]) apply (erule constrains_weaken, blast) apply (simp add: wens_weakening) apply (rule constrains_weaken) apply (rule_tac I=W and A="\v. v-B" and A'="\v. v" in constrains_UN, blast+) done lemma wens_set_imp_leadsTo: "A \ wens_set F B ==> F \ A leadsTo B" apply (erule wens_set.induct) apply (rule leadsTo_refl) apply (blast intro: wens_ensures leadsTo_Trans) apply (blast intro: leadsTo_Union) done lemma leadsTo_imp_wens_set: "F \ A leadsTo B ==> \C \ wens_set F B. A \ C" apply (erule leadsTo_induct_pre) apply (blast dest!: ensures_imp_wens intro: wens_set.Basis wens_set.Wens) apply (clarify, drule ensures_weaken_R, assumption) apply (blast dest!: ensures_imp_wens intro: wens_set.Wens) apply (case_tac "S={}") apply (simp, blast intro: wens_set.Basis) apply (clarsimp dest!: bchoice simp: ball_conj_distrib Bex_def) apply (rule_tac x = "\{Z. \U\S. Z = f U}" in exI) apply (blast intro: wens_set.Union) done text\Assertion (9): 4.27 in the thesis.\ lemma leadsTo_iff_wens_set: "(F \ A leadsTo B) = (\C \ wens_set F B. A \ C)" by (blast intro: leadsTo_imp_wens_set leadsTo_weaken_L wens_set_imp_leadsTo) text\This is the result that requires the definition of @{term wens_set} to require @{term W} to be non-empty in the Unio case, for otherwise we should always have @{term "{} \ wens_set F B"}.\ lemma wens_set_imp_subset: "A \ wens_set F B ==> B \ A" apply (erule wens_set.induct) apply (blast intro: wens_weakening [THEN subsetD])+ done subsection\Properties Involving Program Union\ text\Assertion (4.30) of thesis, reoriented\ lemma awp_Join_eq: "awp (F\G) B = awp F B \ awp G B" by (simp add: awp_def wp_def, blast) lemma wens_subset: "wens F act B - B \ wp act B \ awp F (B \ wens F act B)" by (subst wens_unfold, fast) text\Assertion (4.31)\ lemma subset_wens_Join: "[|A = T \ wens F act B; T-B \ awp F T; A-B \ awp G (A \ B)|] ==> A \ wens (F\G) act B" apply (subgoal_tac "(T \ wens F act B) - B \ wp act B \ awp F (B \ wens F act B) \ awp F T") apply (rule subset_wens) apply (simp add: awp_Join_eq awp_Int_eq Un_commute) apply (simp add: awp_def wp_def, blast) apply (insert wens_subset [of F act B], blast) done text\Assertion (4.32)\ lemma wens_Join_subset: "wens (F\G) act B \ wens F act B" apply (simp add: wens_def) apply (rule gfp_mono) apply (auto simp add: awp_Join_eq) done text\Lemma, because the inductive step is just too messy.\ lemma wens_Union_inductive_step: assumes awpF: "T-B \ awp F T" and awpG: "!!X. X \ wens_set F B ==> (T\X) - B \ awp G (T\X)" shows "[|X \ wens_set F B; act \ Acts F; Y \ X; T\X = T\Y|] ==> wens (F\G) act Y \ wens F act X \ T \ wens F act X = T \ wens (F\G) act Y" apply (subgoal_tac "wens (F\G) act Y \ wens F act X") prefer 2 apply (blast dest: wens_mono intro: wens_Join_subset [THEN subsetD], simp) apply (rule equalityI) prefer 2 apply blast apply (simp add: Int_lower1) apply (frule wens_set_imp_subset) apply (subgoal_tac "T-X \ awp F T") prefer 2 apply (blast intro: awpF [THEN subsetD]) apply (rule_tac B = "wens (F\G) act (T\X)" in subset_trans) prefer 2 apply (blast intro!: wens_mono) apply (subst wens_Int_eq, assumption+) apply (rule subset_wens_Join [of _ T], simp, blast) apply (subgoal_tac "T \ wens F act (T\X) \ T\X = T \ wens F act X") prefer 2 apply (subst wens_Int_eq [symmetric], assumption+) apply (blast intro: wens_weakening [THEN subsetD], simp) apply (blast intro: awpG [THEN subsetD] wens_set.Wens) done theorem wens_Union: assumes awpF: "T-B \ awp F T" and awpG: "!!X. X \ wens_set F B ==> (T\X) - B \ awp G (T\X)" and major: "X \ wens_set F B" shows "\Y \ wens_set (F\G) B. Y \ X & T\X = T\Y" apply (rule wens_set.induct [OF major]) txt\Basis: trivial\ apply (blast intro: wens_set.Basis) txt\Inductive step\ apply clarify apply (rule_tac x = "wens (F\G) act Y" in rev_bexI) apply (force intro: wens_set.Wens) apply (simp add: wens_Union_inductive_step [OF awpF awpG]) txt\Union: by Axiom of Choice\ apply (simp add: ball_conj_distrib Bex_def) apply (clarify dest!: bchoice) apply (rule_tac x = "\{Z. \U\W. Z = f U}" in exI) apply (blast intro: wens_set.Union) done theorem leadsTo_Join: assumes leadsTo: "F \ A leadsTo B" and awpF: "T-B \ awp F T" and awpG: "!!X. X \ wens_set F B ==> (T\X) - B \ awp G (T\X)" shows "F\G \ T\A leadsTo B" apply (rule leadsTo [THEN leadsTo_imp_wens_set, THEN bexE]) apply (rule wens_Union [THEN bexE]) apply (rule awpF) apply (erule awpG, assumption) apply (blast intro: wens_set_imp_leadsTo [THEN leadsTo_weaken_L]) done subsection \The Set @{term "wens_set F B"} for a Single-Assignment Program\ text\Thesis Section 4.3.3\ text\We start by proving laws about single-assignment programs\ lemma awp_single_eq [simp]: "awp (mk_program (init, {act}, allowed)) B = B \ wp act B" by (force simp add: awp_def wp_def) lemma wp_Un_subset: "wp act A \ wp act B \ wp act (A \ B)" by (force simp add: wp_def) lemma wp_Un_eq: "single_valued act ==> wp act (A \ B) = wp act A \ wp act B" apply (rule equalityI) apply (force simp add: wp_def single_valued_def) apply (rule wp_Un_subset) done lemma wp_UN_subset: "(\i\I. wp act (A i)) \ wp act (\i\I. A i)" by (force simp add: wp_def) lemma wp_UN_eq: "[|single_valued act; I\{}|] ==> wp act (\i\I. A i) = (\i\I. wp act (A i))" apply (rule equalityI) prefer 2 apply (rule wp_UN_subset) apply (simp add: wp_def Image_INT_eq) done lemma wens_single_eq: "wens (mk_program (init, {act}, allowed)) act B = B \ wp act B" by (simp add: wens_def gfp_def wp_def, blast) text\Next, we express the @{term "wens_set"} for single-assignment programs\ definition wens_single_finite :: "[('a*'a) set, 'a set, nat] => 'a set" where "wens_single_finite act B k == \i \ atMost k. (wp act ^^ i) B" definition wens_single :: "[('a*'a) set, 'a set] => 'a set" where "wens_single act B == \i. (wp act ^^ i) B" lemma wens_single_Un_eq: "single_valued act ==> wens_single act B \ wp act (wens_single act B) = wens_single act B" apply (rule equalityI) apply (simp_all add: Un_upper1) apply (simp add: wens_single_def wp_UN_eq, clarify) apply (rule_tac a="Suc xa" in UN_I, auto) done lemma atMost_nat_nonempty: "atMost (k::nat) \ {}" by force lemma wens_single_finite_0 [simp]: "wens_single_finite act B 0 = B" by (simp add: wens_single_finite_def) lemma wens_single_finite_Suc: "single_valued act ==> wens_single_finite act B (Suc k) = wens_single_finite act B k \ wp act (wens_single_finite act B k)" apply (simp add: wens_single_finite_def image_def wp_UN_eq [OF _ atMost_nat_nonempty]) apply (force elim!: le_SucE) done lemma wens_single_finite_Suc_eq_wens: "single_valued act ==> wens_single_finite act B (Suc k) = wens (mk_program (init, {act}, allowed)) act (wens_single_finite act B k)" by (simp add: wens_single_finite_Suc wens_single_eq) lemma def_wens_single_finite_Suc_eq_wens: "[|F = mk_program (init, {act}, allowed); single_valued act|] ==> wens_single_finite act B (Suc k) = wens F act (wens_single_finite act B k)" by (simp add: wens_single_finite_Suc_eq_wens) lemma wens_single_finite_Un_eq: "single_valued act ==> wens_single_finite act B k \ wp act (wens_single_finite act B k) \ range (wens_single_finite act B)" by (simp add: wens_single_finite_Suc [symmetric]) lemma wens_single_eq_Union: "wens_single act B = \range (wens_single_finite act B)" by (simp add: wens_single_finite_def wens_single_def, blast) lemma wens_single_finite_eq_Union: "wens_single_finite act B n = (\k\atMost n. wens_single_finite act B k)" apply (auto simp add: wens_single_finite_def) apply (blast intro: le_trans) done lemma wens_single_finite_mono: "m \ n ==> wens_single_finite act B m \ wens_single_finite act B n" by (force simp add: wens_single_finite_eq_Union [of act B n]) lemma wens_single_finite_subset_wens_single: "wens_single_finite act B k \ wens_single act B" by (simp add: wens_single_eq_Union, blast) lemma subset_wens_single_finite: "[|W \ wens_single_finite act B ` (atMost k); single_valued act; W\{}|] ==> \m. \W = wens_single_finite act B m" apply (induct k) apply (rule_tac x=0 in exI, simp, blast) apply (auto simp add: atMost_Suc) apply (case_tac "wens_single_finite act B (Suc k) \ W") prefer 2 apply blast apply (drule_tac x="Suc k" in spec) apply (erule notE, rule equalityI) prefer 2 apply blast apply (subst wens_single_finite_eq_Union) apply (simp add: atMost_Suc, blast) done text\lemma for Union case\ lemma Union_eq_wens_single: "\\k. \ W \ wens_single_finite act B ` {..k}; W \ insert (wens_single act B) (range (wens_single_finite act B))\ \ \W = wens_single act B" apply (cases "wens_single act B \ W") apply (blast dest: wens_single_finite_subset_wens_single [THEN subsetD]) apply (simp add: wens_single_eq_Union) apply (rule equalityI, blast) apply (simp add: UN_subset_iff, clarify) apply (subgoal_tac "\y\W. \n. y = wens_single_finite act B n & i\n") apply (blast intro: wens_single_finite_mono [THEN subsetD]) apply (drule_tac x=i in spec) apply (force simp add: atMost_def) done lemma wens_set_subset_single: "single_valued act ==> wens_set (mk_program (init, {act}, allowed)) B \ insert (wens_single act B) (range (wens_single_finite act B))" apply (rule subsetI) apply (erule wens_set.induct) txt\Basis\ apply (fastforce simp add: wens_single_finite_def) txt\Wens inductive step\ apply (case_tac "acta = Id", simp) apply (simp add: wens_single_eq) apply (elim disjE) apply (simp add: wens_single_Un_eq) apply (force simp add: wens_single_finite_Un_eq) txt\Union inductive step\ apply (case_tac "\k. W \ wens_single_finite act B ` (atMost k)") apply (blast dest!: subset_wens_single_finite, simp) apply (rule disjI1 [OF Union_eq_wens_single], blast+) done lemma wens_single_finite_in_wens_set: "single_valued act \ wens_single_finite act B k \ wens_set (mk_program (init, {act}, allowed)) B" apply (induct_tac k) apply (simp add: wens_single_finite_def wens_set.Basis) apply (simp add: wens_set.Wens wens_single_finite_Suc_eq_wens [of act B _ init allowed]) done lemma single_subset_wens_set: "single_valued act ==> insert (wens_single act B) (range (wens_single_finite act B)) \ wens_set (mk_program (init, {act}, allowed)) B" apply (simp add: image_def wens_single_eq_Union) apply (blast intro: wens_set.Union wens_single_finite_in_wens_set) done text\Theorem (4.29)\ theorem wens_set_single_eq: "[|F = mk_program (init, {act}, allowed); single_valued act|] ==> wens_set F B = insert (wens_single act B) (range (wens_single_finite act B))" apply (rule equalityI) apply (simp add: wens_set_subset_single) apply (erule ssubst, erule single_subset_wens_set) done text\Generalizing Misra's Fixed Point Union Theorem (4.41)\ lemma fp_leadsTo_Join: "[|T-B \ awp F T; T-B \ FP G; F \ A leadsTo B|] ==> F\G \ T\A leadsTo B" apply (rule leadsTo_Join, assumption, blast) apply (simp add: FP_def awp_iff_constrains stable_def constrains_def, blast) done end