(* Title: HOL/UNITY/ListOrder.thy Author: Lawrence C Paulson, Cambridge University Computer Laboratory Copyright 1998 University of Cambridge Lists are partially ordered by Charpentier's Generalized Prefix Relation (xs,ys) : genPrefix(r) if ys = xs' @ zs where length xs = length xs' and corresponding elements of xs, xs' are pairwise related by r Also overloads <= and < for lists! *) section \The Prefix Ordering on Lists\ theory ListOrder imports Main begin inductive_set genPrefix :: "('a * 'a)set => ('a list * 'a list)set" for r :: "('a * 'a)set" where Nil: "([],[]) \ genPrefix(r)" | prepend: "[| (xs,ys) \ genPrefix(r); (x,y) \ r |] ==> (x#xs, y#ys) \ genPrefix(r)" | append: "(xs,ys) \ genPrefix(r) ==> (xs, ys@zs) \ genPrefix(r)" instantiation list :: (type) ord begin definition prefix_def: "xs <= zs \ (xs, zs) \ genPrefix Id" definition strict_prefix_def: "xs < zs \ xs \ zs \ \ zs \ (xs :: 'a list)" instance .. (*Constants for the <= and >= relations, used below in translations*) end definition Le :: "(nat*nat) set" where "Le == {(x,y). x <= y}" definition Ge :: "(nat*nat) set" where "Ge == {(x,y). y <= x}" abbreviation pfixLe :: "[nat list, nat list] => bool" (infixl "pfixLe" 50) where "xs pfixLe ys == (xs,ys) \ genPrefix Le" abbreviation pfixGe :: "[nat list, nat list] => bool" (infixl "pfixGe" 50) where "xs pfixGe ys == (xs,ys) \ genPrefix Ge" subsection\preliminary lemmas\ lemma Nil_genPrefix [iff]: "([], xs) \ genPrefix r" by (cut_tac genPrefix.Nil [THEN genPrefix.append], auto) lemma genPrefix_length_le: "(xs,ys) \ genPrefix r \ length xs <= length ys" by (erule genPrefix.induct, auto) lemma cdlemma: "[| (xs', ys') \ genPrefix r |] ==> (\x xs. xs' = x#xs \ (\y ys. ys' = y#ys & (x,y) \ r & (xs, ys) \ genPrefix r))" apply (erule genPrefix.induct, blast, blast) apply (force intro: genPrefix.append) done (*As usual converting it to an elimination rule is tiresome*) lemma cons_genPrefixE [elim!]: "[| (x#xs, zs) \ genPrefix r; !!y ys. [| zs = y#ys; (x,y) \ r; (xs, ys) \ genPrefix r |] ==> P |] ==> P" by (drule cdlemma, simp, blast) lemma Cons_genPrefix_Cons [iff]: "((x#xs,y#ys) \ genPrefix r) = ((x,y) \ r \ (xs,ys) \ genPrefix r)" by (blast intro: genPrefix.prepend) subsection\genPrefix is a partial order\ lemma refl_genPrefix: "refl r ==> refl (genPrefix r)" apply (unfold refl_on_def, auto) apply (induct_tac "x") prefer 2 apply (blast intro: genPrefix.prepend) apply (blast intro: genPrefix.Nil) done lemma genPrefix_refl [simp]: "refl r \ (l,l) \ genPrefix r" by (erule refl_onD [OF refl_genPrefix UNIV_I]) lemma genPrefix_mono: "r<=s ==> genPrefix r <= genPrefix s" apply clarify apply (erule genPrefix.induct) apply (auto intro: genPrefix.append) done (** Transitivity **) (*A lemma for proving genPrefix_trans_O*) lemma append_genPrefix: "(xs @ ys, zs) \ genPrefix r \ (xs, zs) \ genPrefix r" by (induct xs arbitrary: zs) auto (*Lemma proving transitivity and more*) lemma genPrefix_trans_O: assumes "(x, y) \ genPrefix r" shows "\z. (y, z) \ genPrefix s \ (x, z) \ genPrefix (r O s)" apply (atomize (full)) using assms apply induct apply blast apply (blast intro: genPrefix.prepend) apply (blast dest: append_genPrefix) done lemma genPrefix_trans: "(x, y) \ genPrefix r \ (y, z) \ genPrefix r \ trans r \ (x, z) \ genPrefix r" apply (rule trans_O_subset [THEN genPrefix_mono, THEN subsetD]) apply assumption apply (blast intro: genPrefix_trans_O) done lemma prefix_genPrefix_trans: "[| x<=y; (y,z) \ genPrefix r |] ==> (x, z) \ genPrefix r" apply (unfold prefix_def) apply (drule genPrefix_trans_O, assumption) apply simp done lemma genPrefix_prefix_trans: "[| (x,y) \ genPrefix r; y<=z |] ==> (x,z) \ genPrefix r" apply (unfold prefix_def) apply (drule genPrefix_trans_O, assumption) apply simp done lemma trans_genPrefix: "trans r ==> trans (genPrefix r)" by (blast intro: transI genPrefix_trans) (** Antisymmetry **) lemma genPrefix_antisym: assumes 1: "(xs, ys) \ genPrefix r" and 2: "antisym r" and 3: "(ys, xs) \ genPrefix r" shows "xs = ys" using 1 3 proof induct case Nil then show ?case by blast next case prepend then show ?case using 2 by (simp add: antisym_def) next case (append xs ys zs) then show ?case apply - apply (subgoal_tac "length zs = 0", force) apply (drule genPrefix_length_le)+ apply (simp del: length_0_conv) done qed lemma antisym_genPrefix: "antisym r ==> antisym (genPrefix r)" by (blast intro: antisymI genPrefix_antisym) subsection\recursion equations\ lemma genPrefix_Nil [simp]: "((xs, []) \ genPrefix r) = (xs = [])" by (induct xs) auto lemma same_genPrefix_genPrefix [simp]: "refl r \ ((xs@ys, xs@zs) \ genPrefix r) = ((ys,zs) \ genPrefix r)" by (induct xs) (simp_all add: refl_on_def) lemma genPrefix_Cons: "((xs, y#ys) \ genPrefix r) = (xs=[] | (\z zs. xs=z#zs & (z,y) \ r & (zs,ys) \ genPrefix r))" by (cases xs) auto lemma genPrefix_take_append: "[| refl r; (xs,ys) \ genPrefix r |] ==> (xs@zs, take (length xs) ys @ zs) \ genPrefix r" apply (erule genPrefix.induct) apply (frule_tac [3] genPrefix_length_le) apply (simp_all (no_asm_simp) add: diff_is_0_eq [THEN iffD2]) done lemma genPrefix_append_both: "[| refl r; (xs,ys) \ genPrefix r; length xs = length ys |] ==> (xs@zs, ys @ zs) \ genPrefix r" apply (drule genPrefix_take_append, assumption) apply simp done (*NOT suitable for rewriting since [y] has the form y#ys*) lemma append_cons_eq: "xs @ y # ys = (xs @ [y]) @ ys" by auto lemma aolemma: "[| (xs,ys) \ genPrefix r; refl r |] ==> length xs < length ys \ (xs @ [ys ! length xs], ys) \ genPrefix r" apply (erule genPrefix.induct) apply blast apply simp txt\Append case is hardest\ apply simp apply (frule genPrefix_length_le [THEN le_imp_less_or_eq]) apply (erule disjE) apply (simp_all (no_asm_simp) add: neq_Nil_conv nth_append) apply (blast intro: genPrefix.append, auto) apply (subst append_cons_eq, fast intro: genPrefix_append_both genPrefix.append) done lemma append_one_genPrefix: "[| (xs,ys) \ genPrefix r; length xs < length ys; refl r |] ==> (xs @ [ys ! length xs], ys) \ genPrefix r" by (blast intro: aolemma [THEN mp]) (** Proving the equivalence with Charpentier's definition **) lemma genPrefix_imp_nth: "i < length xs \ (xs, ys) \ genPrefix r \ (xs ! i, ys ! i) \ r" apply (induct xs arbitrary: i ys) apply auto apply (case_tac i) apply auto done lemma nth_imp_genPrefix: "length xs <= length ys \ (\i. i < length xs \ (xs ! i, ys ! i) \ r) \ (xs, ys) \ genPrefix r" apply (induct xs arbitrary: ys) apply (simp_all add: less_Suc_eq_0_disj all_conj_distrib) apply (case_tac ys) apply (force+) done lemma genPrefix_iff_nth: "((xs,ys) \ genPrefix r) = (length xs <= length ys & (\i. i < length xs \ (xs!i, ys!i) \ r))" apply (blast intro: genPrefix_length_le genPrefix_imp_nth nth_imp_genPrefix) done subsection\The type of lists is partially ordered\ declare refl_Id [iff] antisym_Id [iff] trans_Id [iff] lemma prefix_refl [iff]: "xs <= (xs::'a list)" by (simp add: prefix_def) lemma prefix_trans: "!!xs::'a list. [| xs <= ys; ys <= zs |] ==> xs <= zs" apply (unfold prefix_def) apply (blast intro: genPrefix_trans) done lemma prefix_antisym: "!!xs::'a list. [| xs <= ys; ys <= xs |] ==> xs = ys" apply (unfold prefix_def) apply (blast intro: genPrefix_antisym) done lemma prefix_less_le_not_le: "!!xs::'a list. (xs < zs) = (xs <= zs & \ zs \ xs)" by (unfold strict_prefix_def, auto) instance list :: (type) order by (intro_classes, (assumption | rule prefix_refl prefix_trans prefix_antisym prefix_less_le_not_le)+) (*Monotonicity of "set" operator WRT prefix*) lemma set_mono: "xs <= ys ==> set xs <= set ys" apply (unfold prefix_def) apply (erule genPrefix.induct, auto) done (** recursion equations **) lemma Nil_prefix [iff]: "[] <= xs" by (simp add: prefix_def) lemma prefix_Nil [simp]: "(xs <= []) = (xs = [])" by (simp add: prefix_def) lemma Cons_prefix_Cons [simp]: "(x#xs <= y#ys) = (x=y & xs<=ys)" by (simp add: prefix_def) lemma same_prefix_prefix [simp]: "(xs@ys <= xs@zs) = (ys <= zs)" by (simp add: prefix_def) lemma append_prefix [iff]: "(xs@ys <= xs) = (ys <= [])" by (insert same_prefix_prefix [of xs ys "[]"], simp) lemma prefix_appendI [simp]: "xs <= ys ==> xs <= ys@zs" apply (unfold prefix_def) apply (erule genPrefix.append) done lemma prefix_Cons: "(xs <= y#ys) = (xs=[] | (\zs. xs=y#zs \ zs <= ys))" by (simp add: prefix_def genPrefix_Cons) lemma append_one_prefix: "[| xs <= ys; length xs < length ys |] ==> xs @ [ys ! length xs] <= ys" apply (unfold prefix_def) apply (simp add: append_one_genPrefix) done lemma prefix_length_le: "xs <= ys ==> length xs <= length ys" apply (unfold prefix_def) apply (erule genPrefix_length_le) done lemma splemma: "xs<=ys ==> xs~=ys --> length xs < length ys" apply (unfold prefix_def) apply (erule genPrefix.induct, auto) done lemma strict_prefix_length_less: "xs < ys ==> length xs < length ys" apply (unfold strict_prefix_def) apply (blast intro: splemma [THEN mp]) done lemma mono_length: "mono length" by (blast intro: monoI prefix_length_le) (*Equivalence to the definition used in Lex/Prefix.thy*) lemma prefix_iff: "(xs <= zs) = (\ys. zs = xs@ys)" apply (unfold prefix_def) apply (auto simp add: genPrefix_iff_nth nth_append) apply (rule_tac x = "drop (length xs) zs" in exI) apply (rule nth_equalityI) apply (simp_all (no_asm_simp) add: nth_append) done lemma prefix_snoc [simp]: "(xs <= ys@[y]) = (xs = ys@[y] | xs <= ys)" apply (simp add: prefix_iff) apply (rule iffI) apply (erule exE) apply (rename_tac "zs") apply (rule_tac xs = zs in rev_exhaust) apply simp apply clarify apply (simp del: append_assoc add: append_assoc [symmetric], force) done lemma prefix_append_iff: "(xs <= ys@zs) = (xs <= ys | (\us. xs = ys@us & us <= zs))" apply (rule_tac xs = zs in rev_induct) apply force apply (simp del: append_assoc add: append_assoc [symmetric], force) done (*Although the prefix ordering is not linear, the prefixes of a list are linearly ordered.*) lemma common_prefix_linear: fixes xs ys zs :: "'a list" shows "xs <= zs \ ys <= zs \ xs <= ys | ys <= xs" by (induct zs rule: rev_induct) auto subsection\pfixLe, pfixGe: properties inherited from the translations\ (** pfixLe **) lemma refl_Le [iff]: "refl Le" by (unfold refl_on_def Le_def, auto) lemma antisym_Le [iff]: "antisym Le" by (unfold antisym_def Le_def, auto) lemma trans_Le [iff]: "trans Le" by (unfold trans_def Le_def, auto) lemma pfixLe_refl [iff]: "x pfixLe x" by simp lemma pfixLe_trans: "[| x pfixLe y; y pfixLe z |] ==> x pfixLe z" by (blast intro: genPrefix_trans) lemma pfixLe_antisym: "[| x pfixLe y; y pfixLe x |] ==> x = y" by (blast intro: genPrefix_antisym) lemma prefix_imp_pfixLe: "xs<=ys ==> xs pfixLe ys" apply (unfold prefix_def Le_def) apply (blast intro: genPrefix_mono [THEN [2] rev_subsetD]) done lemma refl_Ge [iff]: "refl Ge" by (unfold refl_on_def Ge_def, auto) lemma antisym_Ge [iff]: "antisym Ge" by (unfold antisym_def Ge_def, auto) lemma trans_Ge [iff]: "trans Ge" by (unfold trans_def Ge_def, auto) lemma pfixGe_refl [iff]: "x pfixGe x" by simp lemma pfixGe_trans: "[| x pfixGe y; y pfixGe z |] ==> x pfixGe z" by (blast intro: genPrefix_trans) lemma pfixGe_antisym: "[| x pfixGe y; y pfixGe x |] ==> x = y" by (blast intro: genPrefix_antisym) lemma prefix_imp_pfixGe: "xs<=ys ==> xs pfixGe ys" apply (unfold prefix_def Ge_def) apply (blast intro: genPrefix_mono [THEN [2] rev_subsetD]) done end