(* Title: HOL/UNITY/Comp/TimerArray.thy Author: Lawrence C Paulson, Cambridge University Computer Laboratory Copyright 1998 University of Cambridge A trivial example of reasoning about an array of processes *) theory TimerArray imports "../UNITY_Main" begin type_synonym 'a state = "nat * 'a" (*second component allows new variables*) definition count :: "'a state => nat" where "count s = fst s" definition decr :: "('a state * 'a state) set" where "decr = (UN n uu. {((Suc n, uu), (n,uu))})" definition Timer :: "'a state program" where "Timer = mk_total_program (UNIV, {decr}, UNIV)" declare Timer_def [THEN def_prg_Init, simp] declare count_def [simp] decr_def [simp] (*Demonstrates induction, but not used in the following proof*) lemma Timer_leadsTo_zero: "Timer \ UNIV leadsTo {s. count s = 0}" apply (rule_tac f = count in lessThan_induct, simp) apply (case_tac "m") apply (force intro!: subset_imp_leadsTo) apply (unfold Timer_def, ensures_tac "decr") done lemma Timer_preserves_snd [iff]: "Timer \ preserves snd" apply (rule preservesI) apply (unfold Timer_def, safety) done declare PLam_stable [simp] lemma TimerArray_leadsTo_zero: "finite I \ (plam i: I. Timer) \ UNIV leadsTo {(s,uu). \i\I. s i = 0}" apply (erule_tac A'1 = "\i. lift_set i ({0} \ UNIV)" in finite_stable_completion [THEN leadsTo_weaken]) apply auto (*Safety property, already reduced to the single Timer case*) prefer 2 apply (simp add: Timer_def, safety) (*Progress property for the array of Timers*) apply (rule_tac f = "sub i o fst" in lessThan_induct) apply (case_tac "m") (*Annoying need to massage the conditions to have the form (... \ UNIV)*) apply (auto intro: subset_imp_leadsTo simp add: insert_absorb lift_set_Un_distrib [symmetric] lessThan_Suc [symmetric] Times_Un_distrib1 [symmetric] Times_Diff_distrib1 [symmetric]) apply (rename_tac "n") apply (rule PLam_leadsTo_Basis) apply (auto simp add: lessThan_Suc [symmetric]) apply (unfold Timer_def mk_total_program_def, safety) apply (rule_tac act = decr in totalize_transientI, auto) done end