(* Title: HOL/HOLCF/Tools/holcf_library.ML Author: Brian Huffman Functions for constructing HOLCF types and terms. *) structure HOLCF_Library = struct infixr 6 ->> infixr -->> infix 9 ` (*** Operations from Isabelle/HOL ***) val boolT = HOLogic.boolT val natT = HOLogic.natT val mk_setT = HOLogic.mk_setT val mk_equals = Logic.mk_equals val mk_eq = HOLogic.mk_eq val mk_trp = HOLogic.mk_Trueprop val mk_fst = HOLogic.mk_fst val mk_snd = HOLogic.mk_snd val mk_not = HOLogic.mk_not val mk_conj = HOLogic.mk_conj val mk_disj = HOLogic.mk_disj val mk_imp = HOLogic.mk_imp fun mk_ex (x, t) = HOLogic.exists_const (fastype_of x) $ Term.lambda x t fun mk_all (x, t) = HOLogic.all_const (fastype_of x) $ Term.lambda x t (*** Basic HOLCF concepts ***) fun mk_bottom T = Const (@{const_name bottom}, T) fun below_const T = Const (@{const_name below}, [T, T] ---> boolT) fun mk_below (t, u) = below_const (fastype_of t) $ t $ u fun mk_undef t = mk_eq (t, mk_bottom (fastype_of t)) fun mk_defined t = mk_not (mk_undef t) fun mk_adm t = Const (@{const_name adm}, fastype_of t --> boolT) $ t fun mk_compact t = Const (@{const_name compact}, fastype_of t --> boolT) $ t fun mk_cont t = Const (@{const_name cont}, fastype_of t --> boolT) $ t fun mk_chain t = Const (@{const_name chain}, Term.fastype_of t --> boolT) $ t fun mk_lub t = let val T = Term.range_type (Term.fastype_of t) val lub_const = Const (@{const_name lub}, mk_setT T --> T) val UNIV_const = @{term "UNIV :: nat set"} val image_type = (natT --> T) --> mk_setT natT --> mk_setT T val image_const = Const (@{const_name image}, image_type) in lub_const $ (image_const $ t $ UNIV_const) end (*** Continuous function space ***) fun mk_cfunT (T, U) = Type(@{type_name cfun}, [T, U]) val (op ->>) = mk_cfunT val (op -->>) = Library.foldr mk_cfunT fun dest_cfunT (Type(@{type_name cfun}, [T, U])) = (T, U) | dest_cfunT T = raise TYPE ("dest_cfunT", [T], []) fun capply_const (S, T) = Const(@{const_name Rep_cfun}, (S ->> T) --> (S --> T)) fun cabs_const (S, T) = Const(@{const_name Abs_cfun}, (S --> T) --> (S ->> T)) fun mk_cabs t = let val T = fastype_of t in cabs_const (Term.dest_funT T) $ t end (* builds the expression (% v1 v2 .. vn. rhs) *) fun lambdas [] rhs = rhs | lambdas (v::vs) rhs = Term.lambda v (lambdas vs rhs) (* builds the expression (LAM v. rhs) *) fun big_lambda v rhs = cabs_const (fastype_of v, fastype_of rhs) $ Term.lambda v rhs (* builds the expression (LAM v1 v2 .. vn. rhs) *) fun big_lambdas [] rhs = rhs | big_lambdas (v::vs) rhs = big_lambda v (big_lambdas vs rhs) fun mk_capply (t, u) = let val (S, T) = case fastype_of t of Type(@{type_name cfun}, [S, T]) => (S, T) | _ => raise TERM ("mk_capply " ^ ML_Syntax.print_list ML_Syntax.print_term [t, u], [t, u]) in capply_const (S, T) $ t $ u end val (op `) = mk_capply val list_ccomb : term * term list -> term = Library.foldl mk_capply fun mk_ID T = Const (@{const_name ID}, T ->> T) fun cfcomp_const (T, U, V) = Const (@{const_name cfcomp}, (U ->> V) ->> (T ->> U) ->> (T ->> V)) fun mk_cfcomp (f, g) = let val (U, V) = dest_cfunT (fastype_of f) val (T, U') = dest_cfunT (fastype_of g) in if U = U' then mk_capply (mk_capply (cfcomp_const (T, U, V), f), g) else raise TYPE ("mk_cfcomp", [U, U'], [f, g]) end fun strictify_const T = Const (@{const_name strictify}, T ->> T) fun mk_strictify t = strictify_const (fastype_of t) ` t fun mk_strict t = let val (T, U) = dest_cfunT (fastype_of t) in mk_eq (t ` mk_bottom T, mk_bottom U) end (*** Product type ***) val mk_prodT = HOLogic.mk_prodT fun mk_tupleT [] = HOLogic.unitT | mk_tupleT [T] = T | mk_tupleT (T :: Ts) = mk_prodT (T, mk_tupleT Ts) (* builds the expression (v1,v2,..,vn) *) fun mk_tuple [] = HOLogic.unit | mk_tuple (t::[]) = t | mk_tuple (t::ts) = HOLogic.mk_prod (t, mk_tuple ts) (* builds the expression (%(v1,v2,..,vn). rhs) *) fun lambda_tuple [] rhs = Term.lambda (Free("unit", HOLogic.unitT)) rhs | lambda_tuple (v::[]) rhs = Term.lambda v rhs | lambda_tuple (v::vs) rhs = HOLogic.mk_case_prod (Term.lambda v (lambda_tuple vs rhs)) (*** Lifted cpo type ***) fun mk_upT T = Type(@{type_name "u"}, [T]) fun dest_upT (Type(@{type_name "u"}, [T])) = T | dest_upT T = raise TYPE ("dest_upT", [T], []) fun up_const T = Const(@{const_name up}, T ->> mk_upT T) fun mk_up t = up_const (fastype_of t) ` t fun fup_const (T, U) = Const(@{const_name fup}, (T ->> U) ->> mk_upT T ->> U) fun mk_fup t = fup_const (dest_cfunT (fastype_of t)) ` t fun from_up T = fup_const (T, T) ` mk_ID T (*** Lifted unit type ***) val oneT = @{typ "one"} fun one_case_const T = Const (@{const_name one_case}, T ->> oneT ->> T) fun mk_one_case t = one_case_const (fastype_of t) ` t (*** Strict product type ***) fun mk_sprodT (T, U) = Type(@{type_name sprod}, [T, U]) fun dest_sprodT (Type(@{type_name sprod}, [T, U])) = (T, U) | dest_sprodT T = raise TYPE ("dest_sprodT", [T], []) fun spair_const (T, U) = Const(@{const_name spair}, T ->> U ->> mk_sprodT (T, U)) (* builds the expression (:t, u:) *) fun mk_spair (t, u) = spair_const (fastype_of t, fastype_of u) ` t ` u (* builds the expression (:t1,t2,..,tn:) *) fun mk_stuple [] = @{term "ONE"} | mk_stuple (t::[]) = t | mk_stuple (t::ts) = mk_spair (t, mk_stuple ts) fun sfst_const (T, U) = Const(@{const_name sfst}, mk_sprodT (T, U) ->> T) fun ssnd_const (T, U) = Const(@{const_name ssnd}, mk_sprodT (T, U) ->> U) fun ssplit_const (T, U, V) = Const (@{const_name ssplit}, (T ->> U ->> V) ->> mk_sprodT (T, U) ->> V) fun mk_ssplit t = let val (T, (U, V)) = apsnd dest_cfunT (dest_cfunT (fastype_of t)) in ssplit_const (T, U, V) ` t end (*** Strict sum type ***) fun mk_ssumT (T, U) = Type(@{type_name ssum}, [T, U]) fun dest_ssumT (Type(@{type_name ssum}, [T, U])) = (T, U) | dest_ssumT T = raise TYPE ("dest_ssumT", [T], []) fun sinl_const (T, U) = Const(@{const_name sinl}, T ->> mk_ssumT (T, U)) fun sinr_const (T, U) = Const(@{const_name sinr}, U ->> mk_ssumT (T, U)) (* builds the list [sinl(t1), sinl(sinr(t2)), ... sinr(...sinr(tn))] *) fun mk_sinjects ts = let val Ts = map fastype_of ts fun combine (t, T) (us, U) = let val v = sinl_const (T, U) ` t val vs = map (fn u => sinr_const (T, U) ` u) us in (v::vs, mk_ssumT (T, U)) end fun inj [] = raise Fail "mk_sinjects: empty list" | inj ((t, T)::[]) = ([t], T) | inj ((t, T)::ts) = combine (t, T) (inj ts) in fst (inj (ts ~~ Ts)) end fun sscase_const (T, U, V) = Const(@{const_name sscase}, (T ->> V) ->> (U ->> V) ->> mk_ssumT (T, U) ->> V) fun mk_sscase (t, u) = let val (T, _) = dest_cfunT (fastype_of t) val (U, V) = dest_cfunT (fastype_of u) in sscase_const (T, U, V) ` t ` u end fun from_sinl (T, U) = sscase_const (T, U, T) ` mk_ID T ` mk_bottom (U ->> T) fun from_sinr (T, U) = sscase_const (T, U, U) ` mk_bottom (T ->> U) ` mk_ID U (*** pattern match monad type ***) fun mk_matchT T = Type (@{type_name "match"}, [T]) fun dest_matchT (Type(@{type_name "match"}, [T])) = T | dest_matchT T = raise TYPE ("dest_matchT", [T], []) fun mk_fail T = Const (@{const_name "Fixrec.fail"}, mk_matchT T) fun succeed_const T = Const (@{const_name "Fixrec.succeed"}, T ->> mk_matchT T) fun mk_succeed t = succeed_const (fastype_of t) ` t (*** lifted boolean type ***) val trT = @{typ "tr"} (*** theory of fixed points ***) fun mk_fix t = let val (T, _) = dest_cfunT (fastype_of t) in mk_capply (Const(@{const_name fix}, (T ->> T) ->> T), t) end fun iterate_const T = Const (@{const_name iterate}, natT --> (T ->> T) ->> (T ->> T)) fun mk_iterate (n, f) = let val (T, _) = dest_cfunT (Term.fastype_of f) in (iterate_const T $ n) ` f ` mk_bottom T end end