(* Title: HOL/HOLCF/Tools/Domain/domain_take_proofs.ML Author: Brian Huffman Defines take functions for the given domain equation and proves related theorems. *) signature DOMAIN_TAKE_PROOFS = sig type iso_info = { absT : typ, repT : typ, abs_const : term, rep_const : term, abs_inverse : thm, rep_inverse : thm } type take_info = { take_consts : term list, take_defs : thm list, chain_take_thms : thm list, take_0_thms : thm list, take_Suc_thms : thm list, deflation_take_thms : thm list, take_strict_thms : thm list, finite_consts : term list, finite_defs : thm list } type take_induct_info = { take_consts : term list, take_defs : thm list, chain_take_thms : thm list, take_0_thms : thm list, take_Suc_thms : thm list, deflation_take_thms : thm list, take_strict_thms : thm list, finite_consts : term list, finite_defs : thm list, lub_take_thms : thm list, reach_thms : thm list, take_lemma_thms : thm list, is_finite : bool, take_induct_thms : thm list } val define_take_functions : (binding * iso_info) list -> theory -> take_info * theory val add_lub_take_theorems : (binding * iso_info) list -> take_info -> thm list -> theory -> take_induct_info * theory val map_of_typ : theory -> (typ * term) list -> typ -> term val add_rec_type : (string * bool list) -> theory -> theory val get_rec_tab : theory -> (bool list) Symtab.table val add_deflation_thm : thm -> theory -> theory val get_deflation_thms : theory -> thm list val map_ID_add : attribute val get_map_ID_thms : theory -> thm list end structure Domain_Take_Proofs : DOMAIN_TAKE_PROOFS = struct type iso_info = { absT : typ, repT : typ, abs_const : term, rep_const : term, abs_inverse : thm, rep_inverse : thm } type take_info = { take_consts : term list, take_defs : thm list, chain_take_thms : thm list, take_0_thms : thm list, take_Suc_thms : thm list, deflation_take_thms : thm list, take_strict_thms : thm list, finite_consts : term list, finite_defs : thm list } type take_induct_info = { take_consts : term list, take_defs : thm list, chain_take_thms : thm list, take_0_thms : thm list, take_Suc_thms : thm list, deflation_take_thms : thm list, take_strict_thms : thm list, finite_consts : term list, finite_defs : thm list, lub_take_thms : thm list, reach_thms : thm list, take_lemma_thms : thm list, is_finite : bool, take_induct_thms : thm list } val beta_ss = simpset_of (put_simpset HOL_basic_ss @{context} addsimps @{thms simp_thms} addsimprocs [@{simproc beta_cfun_proc}]) (******************************************************************************) (******************************** theory data *********************************) (******************************************************************************) structure Rec_Data = Theory_Data ( (* list indicates which type arguments allow indirect recursion *) type T = (bool list) Symtab.table val empty = Symtab.empty val extend = I fun merge data = Symtab.merge (K true) data ) fun add_rec_type (tname, bs) = Rec_Data.map (Symtab.insert (K true) (tname, bs)) fun add_deflation_thm thm = Context.theory_map (Named_Theorems.add_thm @{named_theorems domain_deflation} thm) val get_rec_tab = Rec_Data.get fun get_deflation_thms thy = rev (Named_Theorems.get (Proof_Context.init_global thy) @{named_theorems domain_deflation}) val map_ID_add = Named_Theorems.add @{named_theorems domain_map_ID} fun get_map_ID_thms thy = rev (Named_Theorems.get (Proof_Context.init_global thy) @{named_theorems domain_map_ID}) (******************************************************************************) (************************** building types and terms **************************) (******************************************************************************) open HOLCF_Library infixr 6 ->> infix -->> infix 9 ` fun mk_deflation t = Const (@{const_name deflation}, Term.fastype_of t --> boolT) $ t fun mk_eqs (t, u) = HOLogic.mk_Trueprop (HOLogic.mk_eq (t, u)) (******************************************************************************) (****************************** isomorphism info ******************************) (******************************************************************************) fun deflation_abs_rep (info : iso_info) : thm = let val abs_iso = #abs_inverse info val rep_iso = #rep_inverse info val thm = @{thm deflation_abs_rep} OF [abs_iso, rep_iso] in Drule.zero_var_indexes thm end (******************************************************************************) (********************* building map functions over types **********************) (******************************************************************************) fun map_of_typ (thy : theory) (sub : (typ * term) list) (T : typ) : term = let val thms = get_map_ID_thms thy val rules = map (Thm.concl_of #> HOLogic.dest_Trueprop #> HOLogic.dest_eq) thms val rules' = map (apfst mk_ID) sub @ map swap rules in mk_ID T |> Pattern.rewrite_term thy rules' [] |> Pattern.rewrite_term thy rules [] end (******************************************************************************) (********************* declaring definitions and theorems *********************) (******************************************************************************) fun add_qualified_def name (dbind, eqn) = yield_singleton (Global_Theory.add_defs false) ((Binding.qualify_name true dbind name, eqn), []) fun add_qualified_thm name (dbind, thm) = yield_singleton Global_Theory.add_thms ((Binding.qualify_name true dbind name, thm), []) fun add_qualified_simp_thm name (dbind, thm) = yield_singleton Global_Theory.add_thms ((Binding.qualify_name true dbind name, thm), [Simplifier.simp_add]) (******************************************************************************) (************************** defining take functions ***************************) (******************************************************************************) fun define_take_functions (spec : (binding * iso_info) list) (thy : theory) = let (* retrieve components of spec *) val dbinds = map fst spec val iso_infos = map snd spec val dom_eqns = map (fn x => (#absT x, #repT x)) iso_infos val rep_abs_consts = map (fn x => (#rep_const x, #abs_const x)) iso_infos fun mk_projs [] _ = [] | mk_projs (x::[]) t = [(x, t)] | mk_projs (x::xs) t = (x, mk_fst t) :: mk_projs xs (mk_snd t) fun mk_cfcomp2 ((rep_const, abs_const), f) = mk_cfcomp (abs_const, mk_cfcomp (f, rep_const)) (* define take functional *) val newTs : typ list = map fst dom_eqns val copy_arg_type = mk_tupleT (map (fn T => T ->> T) newTs) val copy_arg = Free ("f", copy_arg_type) val copy_args = map snd (mk_projs dbinds copy_arg) fun one_copy_rhs (rep_abs, (_, rhsT)) = let val body = map_of_typ thy (newTs ~~ copy_args) rhsT in mk_cfcomp2 (rep_abs, body) end val take_functional = big_lambda copy_arg (mk_tuple (map one_copy_rhs (rep_abs_consts ~~ dom_eqns))) val take_rhss = let val n = Free ("n", HOLogic.natT) val rhs = mk_iterate (n, take_functional) in map (lambda n o snd) (mk_projs dbinds rhs) end (* define take constants *) fun define_take_const ((dbind, take_rhs), (lhsT, _)) thy = let val take_type = HOLogic.natT --> lhsT ->> lhsT val take_bind = Binding.suffix_name "_take" dbind val (take_const, thy) = Sign.declare_const_global ((take_bind, take_type), NoSyn) thy val take_eqn = Logic.mk_equals (take_const, take_rhs) val (take_def_thm, thy) = add_qualified_def "take_def" (dbind, take_eqn) thy in ((take_const, take_def_thm), thy) end val ((take_consts, take_defs), thy) = thy |> fold_map define_take_const (dbinds ~~ take_rhss ~~ dom_eqns) |>> ListPair.unzip (* prove chain_take lemmas *) fun prove_chain_take (take_const, dbind) thy = let val goal = mk_trp (mk_chain take_const) val rules = take_defs @ @{thms chain_iterate ch2ch_fst ch2ch_snd} fun tac ctxt = simp_tac (put_simpset HOL_basic_ss ctxt addsimps rules) 1 val thm = Goal.prove_global thy [] [] goal (tac o #context) in add_qualified_simp_thm "chain_take" (dbind, thm) thy end val (chain_take_thms, thy) = fold_map prove_chain_take (take_consts ~~ dbinds) thy (* prove take_0 lemmas *) fun prove_take_0 ((take_const, dbind), (lhsT, _)) thy = let val lhs = take_const $ @{term "0::nat"} val goal = mk_eqs (lhs, mk_bottom (lhsT ->> lhsT)) val rules = take_defs @ @{thms iterate_0 fst_strict snd_strict} fun tac ctxt = simp_tac (put_simpset HOL_basic_ss ctxt addsimps rules) 1 val take_0_thm = Goal.prove_global thy [] [] goal (tac o #context) in add_qualified_simp_thm "take_0" (dbind, take_0_thm) thy end val (take_0_thms, thy) = fold_map prove_take_0 (take_consts ~~ dbinds ~~ dom_eqns) thy (* prove take_Suc lemmas *) val n = Free ("n", natT) val take_is = map (fn t => t $ n) take_consts fun prove_take_Suc (((take_const, rep_abs), dbind), (_, rhsT)) thy = let val lhs = take_const $ (@{term Suc} $ n) val body = map_of_typ thy (newTs ~~ take_is) rhsT val rhs = mk_cfcomp2 (rep_abs, body) val goal = mk_eqs (lhs, rhs) val simps = @{thms iterate_Suc fst_conv snd_conv} val rules = take_defs @ simps fun tac ctxt = simp_tac (put_simpset beta_ss ctxt addsimps rules) 1 val take_Suc_thm = Goal.prove_global thy [] [] goal (tac o #context) in add_qualified_thm "take_Suc" (dbind, take_Suc_thm) thy end val (take_Suc_thms, thy) = fold_map prove_take_Suc (take_consts ~~ rep_abs_consts ~~ dbinds ~~ dom_eqns) thy (* prove deflation theorems for take functions *) val deflation_abs_rep_thms = map deflation_abs_rep iso_infos val deflation_take_thm = let val n = Free ("n", natT) fun mk_goal take_const = mk_deflation (take_const $ n) val goal = mk_trp (foldr1 mk_conj (map mk_goal take_consts)) val bottom_rules = take_0_thms @ @{thms deflation_bottom simp_thms} val deflation_rules = @{thms conjI deflation_ID} @ deflation_abs_rep_thms @ get_deflation_thms thy in Goal.prove_global thy [] [] goal (fn {context = ctxt, ...} => EVERY [resolve_tac ctxt @{thms nat.induct} 1, simp_tac (put_simpset HOL_basic_ss ctxt addsimps bottom_rules) 1, asm_simp_tac (put_simpset HOL_basic_ss ctxt addsimps take_Suc_thms) 1, REPEAT (eresolve_tac ctxt @{thms conjE} 1 ORELSE resolve_tac ctxt deflation_rules 1 ORELSE assume_tac ctxt 1)]) end fun conjuncts [] _ = [] | conjuncts (n::[]) thm = [(n, thm)] | conjuncts (n::ns) thm = let val thmL = thm RS @{thm conjunct1} val thmR = thm RS @{thm conjunct2} in (n, thmL):: conjuncts ns thmR end val (deflation_take_thms, thy) = fold_map (add_qualified_thm "deflation_take") (map (apsnd Drule.zero_var_indexes) (conjuncts dbinds deflation_take_thm)) thy (* prove strictness of take functions *) fun prove_take_strict (deflation_take, dbind) thy = let val take_strict_thm = Drule.zero_var_indexes (@{thm deflation_strict} OF [deflation_take]) in add_qualified_simp_thm "take_strict" (dbind, take_strict_thm) thy end val (take_strict_thms, thy) = fold_map prove_take_strict (deflation_take_thms ~~ dbinds) thy (* prove take/take rules *) fun prove_take_take ((chain_take, deflation_take), dbind) thy = let val take_take_thm = Drule.zero_var_indexes (@{thm deflation_chain_min} OF [chain_take, deflation_take]) in add_qualified_thm "take_take" (dbind, take_take_thm) thy end val (_, thy) = fold_map prove_take_take (chain_take_thms ~~ deflation_take_thms ~~ dbinds) thy (* prove take_below rules *) fun prove_take_below (deflation_take, dbind) thy = let val take_below_thm = Drule.zero_var_indexes (@{thm deflation.below} OF [deflation_take]) in add_qualified_thm "take_below" (dbind, take_below_thm) thy end val (_, thy) = fold_map prove_take_below (deflation_take_thms ~~ dbinds) thy (* define finiteness predicates *) fun define_finite_const ((dbind, take_const), (lhsT, _)) thy = let val finite_type = lhsT --> boolT val finite_bind = Binding.suffix_name "_finite" dbind val (finite_const, thy) = Sign.declare_const_global ((finite_bind, finite_type), NoSyn) thy val x = Free ("x", lhsT) val n = Free ("n", natT) val finite_rhs = lambda x (HOLogic.exists_const natT $ (lambda n (mk_eq (mk_capply (take_const $ n, x), x)))) val finite_eqn = Logic.mk_equals (finite_const, finite_rhs) val (finite_def_thm, thy) = add_qualified_def "finite_def" (dbind, finite_eqn) thy in ((finite_const, finite_def_thm), thy) end val ((finite_consts, finite_defs), thy) = thy |> fold_map define_finite_const (dbinds ~~ take_consts ~~ dom_eqns) |>> ListPair.unzip val result = { take_consts = take_consts, take_defs = take_defs, chain_take_thms = chain_take_thms, take_0_thms = take_0_thms, take_Suc_thms = take_Suc_thms, deflation_take_thms = deflation_take_thms, take_strict_thms = take_strict_thms, finite_consts = finite_consts, finite_defs = finite_defs } in (result, thy) end fun prove_finite_take_induct (spec : (binding * iso_info) list) (take_info : take_info) (lub_take_thms : thm list) (thy : theory) = let val dbinds = map fst spec val iso_infos = map snd spec val absTs = map #absT iso_infos val {take_consts, ...} = take_info val {chain_take_thms, take_0_thms, take_Suc_thms, ...} = take_info val {finite_consts, finite_defs, ...} = take_info val decisive_lemma = let fun iso_locale (info : iso_info) = @{thm iso.intro} OF [#abs_inverse info, #rep_inverse info] val iso_locale_thms = map iso_locale iso_infos val decisive_abs_rep_thms = map (fn x => @{thm decisive_abs_rep} OF [x]) iso_locale_thms val n = Free ("n", @{typ nat}) fun mk_decisive t = Const (@{const_name decisive}, fastype_of t --> boolT) $ t fun f take_const = mk_decisive (take_const $ n) val goal = mk_trp (foldr1 mk_conj (map f take_consts)) val rules0 = @{thm decisive_bottom} :: take_0_thms val rules1 = take_Suc_thms @ decisive_abs_rep_thms @ @{thms decisive_ID decisive_ssum_map decisive_sprod_map} fun tac ctxt = EVERY [ resolve_tac ctxt @{thms nat.induct} 1, simp_tac (put_simpset HOL_ss ctxt addsimps rules0) 1, asm_simp_tac (put_simpset HOL_ss ctxt addsimps rules1) 1] in Goal.prove_global thy [] [] goal (tac o #context) end fun conjuncts 1 thm = [thm] | conjuncts n thm = let val thmL = thm RS @{thm conjunct1} val thmR = thm RS @{thm conjunct2} in thmL :: conjuncts (n-1) thmR end val decisive_thms = conjuncts (length spec) decisive_lemma fun prove_finite_thm (absT, finite_const) = let val goal = mk_trp (finite_const $ Free ("x", absT)) fun tac ctxt = EVERY [ rewrite_goals_tac ctxt finite_defs, resolve_tac ctxt @{thms lub_ID_finite} 1, resolve_tac ctxt chain_take_thms 1, resolve_tac ctxt lub_take_thms 1, resolve_tac ctxt decisive_thms 1] in Goal.prove_global thy [] [] goal (tac o #context) end val finite_thms = map prove_finite_thm (absTs ~~ finite_consts) fun prove_take_induct ((ch_take, lub_take), decisive) = Drule.export_without_context (@{thm lub_ID_finite_take_induct} OF [ch_take, lub_take, decisive]) val take_induct_thms = map prove_take_induct (chain_take_thms ~~ lub_take_thms ~~ decisive_thms) val thy = thy |> fold (snd oo add_qualified_thm "finite") (dbinds ~~ finite_thms) |> fold (snd oo add_qualified_thm "take_induct") (dbinds ~~ take_induct_thms) in ((finite_thms, take_induct_thms), thy) end fun add_lub_take_theorems (spec : (binding * iso_info) list) (take_info : take_info) (lub_take_thms : thm list) (thy : theory) = let (* retrieve components of spec *) val dbinds = map fst spec val iso_infos = map snd spec val absTs = map #absT iso_infos val repTs = map #repT iso_infos val {chain_take_thms, ...} = take_info (* prove take lemmas *) fun prove_take_lemma ((chain_take, lub_take), dbind) thy = let val take_lemma = Drule.export_without_context (@{thm lub_ID_take_lemma} OF [chain_take, lub_take]) in add_qualified_thm "take_lemma" (dbind, take_lemma) thy end val (take_lemma_thms, thy) = fold_map prove_take_lemma (chain_take_thms ~~ lub_take_thms ~~ dbinds) thy (* prove reach lemmas *) fun prove_reach_lemma ((chain_take, lub_take), dbind) thy = let val thm = Drule.export_without_context (@{thm lub_ID_reach} OF [chain_take, lub_take]) in add_qualified_thm "reach" (dbind, thm) thy end val (reach_thms, thy) = fold_map prove_reach_lemma (chain_take_thms ~~ lub_take_thms ~~ dbinds) thy (* test for finiteness of domain definitions *) local val types = [@{type_name ssum}, @{type_name sprod}] fun finite d T = if member (op =) absTs T then d else finite' d T and finite' d (Type (c, Ts)) = let val d' = d andalso member (op =) types c in forall (finite d') Ts end | finite' _ _ = true in val is_finite = forall (finite true) repTs end val ((_, take_induct_thms), thy) = if is_finite then let val ((finites, take_inducts), thy) = prove_finite_take_induct spec take_info lub_take_thms thy in ((SOME finites, take_inducts), thy) end else let fun prove_take_induct (chain_take, lub_take) = Drule.export_without_context (@{thm lub_ID_take_induct} OF [chain_take, lub_take]) val take_inducts = map prove_take_induct (chain_take_thms ~~ lub_take_thms) val thy = fold (snd oo add_qualified_thm "take_induct") (dbinds ~~ take_inducts) thy in ((NONE, take_inducts), thy) end val result = { take_consts = #take_consts take_info, take_defs = #take_defs take_info, chain_take_thms = #chain_take_thms take_info, take_0_thms = #take_0_thms take_info, take_Suc_thms = #take_Suc_thms take_info, deflation_take_thms = #deflation_take_thms take_info, take_strict_thms = #take_strict_thms take_info, finite_consts = #finite_consts take_info, finite_defs = #finite_defs take_info, lub_take_thms = lub_take_thms, reach_thms = reach_thms, take_lemma_thms = take_lemma_thms, is_finite = is_finite, take_induct_thms = take_induct_thms } in (result, thy) end end