(* Title: HOL/HOLCF/IOA/Sequence.thy Author: Olaf Müller *) section \Sequences over flat domains with lifted elements\ theory Sequence imports Seq begin default_sort type type_synonym 'a Seq = "'a lift seq" definition Consq :: "'a \ 'a Seq \ 'a Seq" where "Consq a = (LAM s. Def a ## s)" definition Filter :: "('a \ bool) \ 'a Seq \ 'a Seq" where "Filter P = sfilter \ (flift2 P)" definition Map :: "('a \ 'b) \ 'a Seq \ 'b Seq" where "Map f = smap \ (flift2 f)" definition Forall :: "('a \ bool) \ 'a Seq \ bool" where "Forall P = sforall (flift2 P)" definition Last :: "'a Seq \ 'a lift" where "Last = slast" definition Dropwhile :: "('a \ bool) \ 'a Seq \ 'a Seq" where "Dropwhile P = sdropwhile \ (flift2 P)" definition Takewhile :: "('a \ bool) \ 'a Seq \ 'a Seq" where "Takewhile P = stakewhile \ (flift2 P)" definition Zip :: "'a Seq \ 'b Seq \ ('a * 'b) Seq" where "Zip = (fix \ (LAM h t1 t2. case t1 of nil \ nil | x ## xs \ (case t2 of nil \ UU | y ## ys \ (case x of UU \ UU | Def a \ (case y of UU \ UU | Def b \ Def (a, b) ## (h \ xs \ ys))))))" definition Flat :: "'a Seq seq \ 'a Seq" where "Flat = sflat" definition Filter2 :: "('a \ bool) \ 'a Seq \ 'a Seq" where "Filter2 P = (fix \ (LAM h t. case t of nil \ nil | x ## xs \ (case x of UU \ UU | Def y \ (if P y then x ## (h \ xs) else h \ xs))))" abbreviation Consq_syn ("(_/\_)" [66, 65] 65) where "a \ s \ Consq a \ s" subsection \List enumeration\ syntax "_totlist" :: "args \ 'a Seq" ("[(_)!]") "_partlist" :: "args \ 'a Seq" ("[(_)?]") translations "[x, xs!]" \ "x \ [xs!]" "[x!]" \ "x\nil" "[x, xs?]" \ "x \ [xs?]" "[x?]" \ "x \ CONST bottom" declare andalso_and [simp] declare andalso_or [simp] subsection \Recursive equations of operators\ subsubsection \Map\ lemma Map_UU: "Map f \ UU = UU" by (simp add: Map_def) lemma Map_nil: "Map f \ nil = nil" by (simp add: Map_def) lemma Map_cons: "Map f \ (x \ xs) = (f x) \ Map f \ xs" by (simp add: Map_def Consq_def flift2_def) subsubsection \Filter\ lemma Filter_UU: "Filter P \ UU = UU" by (simp add: Filter_def) lemma Filter_nil: "Filter P \ nil = nil" by (simp add: Filter_def) lemma Filter_cons: "Filter P \ (x \ xs) = (if P x then x \ (Filter P \ xs) else Filter P \ xs)" by (simp add: Filter_def Consq_def flift2_def If_and_if) subsubsection \Forall\ lemma Forall_UU: "Forall P UU" by (simp add: Forall_def sforall_def) lemma Forall_nil: "Forall P nil" by (simp add: Forall_def sforall_def) lemma Forall_cons: "Forall P (x \ xs) = (P x \ Forall P xs)" by (simp add: Forall_def sforall_def Consq_def flift2_def) subsubsection \Conc\ lemma Conc_cons: "(x \ xs) @@ y = x \ (xs @@ y)" by (simp add: Consq_def) subsubsection \Takewhile\ lemma Takewhile_UU: "Takewhile P \ UU = UU" by (simp add: Takewhile_def) lemma Takewhile_nil: "Takewhile P \ nil = nil" by (simp add: Takewhile_def) lemma Takewhile_cons: "Takewhile P \ (x \ xs) = (if P x then x \ (Takewhile P \ xs) else nil)" by (simp add: Takewhile_def Consq_def flift2_def If_and_if) subsubsection \DropWhile\ lemma Dropwhile_UU: "Dropwhile P \ UU = UU" by (simp add: Dropwhile_def) lemma Dropwhile_nil: "Dropwhile P \ nil = nil" by (simp add: Dropwhile_def) lemma Dropwhile_cons: "Dropwhile P \ (x \ xs) = (if P x then Dropwhile P \ xs else x \ xs)" by (simp add: Dropwhile_def Consq_def flift2_def If_and_if) subsubsection \Last\ lemma Last_UU: "Last \ UU = UU" by (simp add: Last_def) lemma Last_nil: "Last \ nil = UU" by (simp add: Last_def) lemma Last_cons: "Last \ (x \ xs) = (if xs = nil then Def x else Last \ xs)" by (cases xs) (simp_all add: Last_def Consq_def) subsubsection \Flat\ lemma Flat_UU: "Flat \ UU = UU" by (simp add: Flat_def) lemma Flat_nil: "Flat \ nil = nil" by (simp add: Flat_def) lemma Flat_cons: "Flat \ (x ## xs) = x @@ (Flat \ xs)" by (simp add: Flat_def Consq_def) subsubsection \Zip\ lemma Zip_unfold: "Zip = (LAM t1 t2. case t1 of nil \ nil | x ## xs \ (case t2 of nil \ UU | y ## ys \ (case x of UU \ UU | Def a \ (case y of UU \ UU | Def b \ Def (a, b) ## (Zip \ xs \ ys)))))" apply (rule trans) apply (rule fix_eq4) apply (rule Zip_def) apply (rule beta_cfun) apply simp done lemma Zip_UU1: "Zip \ UU \ y = UU" apply (subst Zip_unfold) apply simp done lemma Zip_UU2: "x \ nil \ Zip \ x \ UU = UU" apply (subst Zip_unfold) apply simp apply (cases x) apply simp_all done lemma Zip_nil: "Zip \ nil \ y = nil" apply (subst Zip_unfold) apply simp done lemma Zip_cons_nil: "Zip \ (x \ xs) \ nil = UU" apply (subst Zip_unfold) apply (simp add: Consq_def) done lemma Zip_cons: "Zip \ (x \ xs) \ (y \ ys) = (x, y) \ Zip \ xs \ ys" apply (rule trans) apply (subst Zip_unfold) apply simp apply (simp add: Consq_def) done lemmas [simp del] = sfilter_UU sfilter_nil sfilter_cons smap_UU smap_nil smap_cons sforall2_UU sforall2_nil sforall2_cons slast_UU slast_nil slast_cons stakewhile_UU stakewhile_nil stakewhile_cons sdropwhile_UU sdropwhile_nil sdropwhile_cons sflat_UU sflat_nil sflat_cons szip_UU1 szip_UU2 szip_nil szip_cons_nil szip_cons lemmas [simp] = Filter_UU Filter_nil Filter_cons Map_UU Map_nil Map_cons Forall_UU Forall_nil Forall_cons Last_UU Last_nil Last_cons Conc_cons Takewhile_UU Takewhile_nil Takewhile_cons Dropwhile_UU Dropwhile_nil Dropwhile_cons Zip_UU1 Zip_UU2 Zip_nil Zip_cons_nil Zip_cons subsection \Cons\ lemma Consq_def2: "a \ s = Def a ## s" by (simp add: Consq_def) lemma Seq_exhaust: "x = UU \ x = nil \ (\a s. x = a \ s)" apply (simp add: Consq_def2) apply (cut_tac seq.nchotomy) apply (fast dest: not_Undef_is_Def [THEN iffD1]) done lemma Seq_cases: obtains "x = UU" | "x = nil" | a s where "x = a \ s" apply (cut_tac x="x" in Seq_exhaust) apply (erule disjE) apply simp apply (erule disjE) apply simp apply (erule exE)+ apply simp done lemma Cons_not_UU: "a \ s \ UU" apply (subst Consq_def2) apply simp done lemma Cons_not_less_UU: "\ (a \ x) \ UU" apply (rule notI) apply (drule below_antisym) apply simp apply (simp add: Cons_not_UU) done lemma Cons_not_less_nil: "\ a \ s \ nil" by (simp add: Consq_def2) lemma Cons_not_nil: "a \ s \ nil" by (simp add: Consq_def2) lemma Cons_not_nil2: "nil \ a \ s" by (simp add: Consq_def2) lemma Cons_inject_eq: "a \ s = b \ t \ a = b \ s = t" by (simp add: Consq_def2 scons_inject_eq) lemma Cons_inject_less_eq: "a \ s \ b \ t \ a = b \ s \ t" by (simp add: Consq_def2) lemma seq_take_Cons: "seq_take (Suc n) \ (a \ x) = a \ (seq_take n \ x)" by (simp add: Consq_def) lemmas [simp] = Cons_not_nil2 Cons_inject_eq Cons_inject_less_eq seq_take_Cons Cons_not_UU Cons_not_less_UU Cons_not_less_nil Cons_not_nil subsection \Induction\ lemma Seq_induct: assumes "adm P" and "P UU" and "P nil" and "\a s. P s \ P (a \ s)" shows "P x" apply (insert assms) apply (erule (2) seq.induct) apply defined apply (simp add: Consq_def) done lemma Seq_FinitePartial_ind: assumes "P UU" and "P nil" and "\a s. P s \ P (a \ s)" shows "seq_finite x \ P x" apply (insert assms) apply (erule (1) seq_finite_ind) apply defined apply (simp add: Consq_def) done lemma Seq_Finite_ind: assumes "Finite x" and "P nil" and "\a s. Finite s \ P s \ P (a \ s)" shows "P x" apply (insert assms) apply (erule (1) Finite.induct) apply defined apply (simp add: Consq_def) done subsection \\HD\ and \TL\\ lemma HD_Cons [simp]: "HD \ (x \ y) = Def x" by (simp add: Consq_def) lemma TL_Cons [simp]: "TL \ (x \ y) = y" by (simp add: Consq_def) subsection \\Finite\, \Partial\, \Infinite\\ lemma Finite_Cons [simp]: "Finite (a \ xs) = Finite xs" by (simp add: Consq_def2 Finite_cons) lemma FiniteConc_1: "Finite (x::'a Seq) \ Finite y \ Finite (x @@ y)" apply (erule Seq_Finite_ind) apply simp_all done lemma FiniteConc_2: "Finite (z::'a Seq) \ \x y. z = x @@ y \ Finite x \ Finite y" apply (erule Seq_Finite_ind) text \\nil\\ apply (intro strip) apply (rule_tac x="x" in Seq_cases, simp_all) text \\cons\\ apply (intro strip) apply (rule_tac x="x" in Seq_cases, simp_all) apply (rule_tac x="y" in Seq_cases, simp_all) done lemma FiniteConc [simp]: "Finite (x @@ y) \ Finite (x::'a Seq) \ Finite y" apply (rule iffI) apply (erule FiniteConc_2 [rule_format]) apply (rule refl) apply (rule FiniteConc_1 [rule_format]) apply auto done lemma FiniteMap1: "Finite s \ Finite (Map f \ s)" apply (erule Seq_Finite_ind) apply simp_all done lemma FiniteMap2: "Finite s \ \t. s = Map f \ t \ Finite t" apply (erule Seq_Finite_ind) apply (intro strip) apply (rule_tac x="t" in Seq_cases, simp_all) text \\main case\\ apply auto apply (rule_tac x="t" in Seq_cases, simp_all) done lemma Map2Finite: "Finite (Map f \ s) = Finite s" apply auto apply (erule FiniteMap2 [rule_format]) apply (rule refl) apply (erule FiniteMap1) done lemma FiniteFilter: "Finite s \ Finite (Filter P \ s)" apply (erule Seq_Finite_ind) apply simp_all done subsection \\Conc\\ lemma Conc_cong: "\x::'a Seq. Finite x \ (x @@ y) = (x @@ z) \ y = z" apply (erule Seq_Finite_ind) apply simp_all done lemma Conc_assoc: "(x @@ y) @@ z = (x::'a Seq) @@ y @@ z" apply (rule_tac x="x" in Seq_induct) apply simp_all done lemma nilConc [simp]: "s@@ nil = s" apply (induct s) apply simp apply simp apply simp apply simp done (*Should be same as nil_is_Conc2 when all nils are turned to right side!*) lemma nil_is_Conc: "nil = x @@ y \ (x::'a Seq) = nil \ y = nil" apply (rule_tac x="x" in Seq_cases) apply auto done lemma nil_is_Conc2: "x @@ y = nil \ (x::'a Seq) = nil \ y = nil" apply (rule_tac x="x" in Seq_cases) apply auto done subsection \Last\ lemma Finite_Last1: "Finite s \ s \ nil \ Last \ s \ UU" by (erule Seq_Finite_ind) simp_all lemma Finite_Last2: "Finite s \ Last \ s = UU \ s = nil" by (erule Seq_Finite_ind) auto subsection \Filter, Conc\ lemma FilterPQ: "Filter P \ (Filter Q \ s) = Filter (\x. P x \ Q x) \ s" by (rule_tac x="s" in Seq_induct) simp_all lemma FilterConc: "Filter P \ (x @@ y) = (Filter P \ x @@ Filter P \ y)" by (simp add: Filter_def sfiltersconc) subsection \Map\ lemma MapMap: "Map f \ (Map g \ s) = Map (f \ g) \ s" by (rule_tac x="s" in Seq_induct) simp_all lemma MapConc: "Map f \ (x @@ y) = (Map f \ x) @@ (Map f \ y)" by (rule_tac x="x" in Seq_induct) simp_all lemma MapFilter: "Filter P \ (Map f \ x) = Map f \ (Filter (P \ f) \ x)" by (rule_tac x="x" in Seq_induct) simp_all lemma nilMap: "nil = (Map f \ s) \ s = nil" by (rule_tac x="s" in Seq_cases) simp_all lemma ForallMap: "Forall P (Map f \ s) = Forall (P \ f) s" apply (rule_tac x="s" in Seq_induct) apply (simp add: Forall_def sforall_def) apply simp_all done subsection \Forall\ lemma ForallPForallQ1: "Forall P ys \ (\x. P x \ Q x) \ Forall Q ys" apply (rule_tac x="ys" in Seq_induct) apply (simp add: Forall_def sforall_def) apply simp_all done lemmas ForallPForallQ = ForallPForallQ1 [THEN mp, OF conjI, OF _ allI, OF _ impI] lemma Forall_Conc_impl: "Forall P x \ Forall P y \ Forall P (x @@ y)" apply (rule_tac x="x" in Seq_induct) apply (simp add: Forall_def sforall_def) apply simp_all done lemma Forall_Conc [simp]: "Finite x \ Forall P (x @@ y) \ Forall P x \ Forall P y" by (erule Seq_Finite_ind) simp_all lemma ForallTL1: "Forall P s \ Forall P (TL \ s)" apply (rule_tac x="s" in Seq_induct) apply (simp add: Forall_def sforall_def) apply simp_all done lemmas ForallTL = ForallTL1 [THEN mp] lemma ForallDropwhile1: "Forall P s \ Forall P (Dropwhile Q \ s)" apply (rule_tac x="s" in Seq_induct) apply (simp add: Forall_def sforall_def) apply simp_all done lemmas ForallDropwhile = ForallDropwhile1 [THEN mp] (*only admissible in t, not if done in s*) lemma Forall_prefix: "\s. Forall P s \ t \ s \ Forall P t" apply (rule_tac x="t" in Seq_induct) apply (simp add: Forall_def sforall_def) apply simp_all apply (intro strip) apply (rule_tac x="sa" in Seq_cases) apply simp apply auto done lemmas Forall_prefixclosed = Forall_prefix [rule_format] lemma Forall_postfixclosed: "Finite h \ Forall P s \ s= h @@ t \ Forall P t" by auto lemma ForallPFilterQR1: "(\x. P x \ Q x = R x) \ Forall P tr \ Filter Q \ tr = Filter R \ tr" apply (rule_tac x="tr" in Seq_induct) apply (simp add: Forall_def sforall_def) apply simp_all done lemmas ForallPFilterQR = ForallPFilterQR1 [THEN mp, OF conjI, OF allI] subsection \Forall, Filter\ lemma ForallPFilterP: "Forall P (Filter P \ x)" by (simp add: Filter_def Forall_def forallPsfilterP) (*holds also in other direction, then equal to forallPfilterP*) lemma ForallPFilterPid1: "Forall P x \ Filter P \ x = x" apply (rule_tac x="x" in Seq_induct) apply (simp add: Forall_def sforall_def Filter_def) apply simp_all done lemmas ForallPFilterPid = ForallPFilterPid1 [THEN mp] (*holds also in other direction*) lemma ForallnPFilterPnil1: "Finite ys \ Forall (\x. \ P x) ys \ Filter P \ ys = nil" by (erule Seq_Finite_ind) simp_all lemmas ForallnPFilterPnil = ForallnPFilterPnil1 [THEN mp] (*holds also in other direction*) lemma ForallnPFilterPUU1: "\ Finite ys \ Forall (\x. \ P x) ys \ Filter P \ ys = UU" apply (rule_tac x="ys" in Seq_induct) apply (simp add: Forall_def sforall_def) apply simp_all done lemmas ForallnPFilterPUU = ForallnPFilterPUU1 [THEN mp, OF conjI] (*inverse of ForallnPFilterPnil*) lemma FilternPnilForallP [rule_format]: "Filter P \ ys = nil \ Forall (\x. \ P x) ys \ Finite ys" apply (rule_tac x="ys" in Seq_induct) text \adm\ apply (simp add: Forall_def sforall_def) text \base cases\ apply simp apply simp text \main case\ apply simp done (*inverse of ForallnPFilterPUU*) lemma FilternPUUForallP: assumes "Filter P \ ys = UU" shows "Forall (\x. \ P x) ys \ \ Finite ys" proof show "Forall (\x. \ P x) ys" proof (rule classical) assume "\ ?thesis" then have "Filter P \ ys \ UU" apply (rule rev_mp) apply (induct ys rule: Seq_induct) apply (simp add: Forall_def sforall_def) apply simp_all done with assms show ?thesis by contradiction qed show "\ Finite ys" proof assume "Finite ys" then have "Filter P\ys \ UU" by (rule Seq_Finite_ind) simp_all with assms show False by contradiction qed qed lemma ForallQFilterPnil: "Forall Q ys \ Finite ys \ (\x. Q x \ \ P x) \ Filter P \ ys = nil" apply (erule ForallnPFilterPnil) apply (erule ForallPForallQ) apply auto done lemma ForallQFilterPUU: "\ Finite ys \ Forall Q ys \ (\x. Q x \ \ P x) \ Filter P \ ys = UU" apply (erule ForallnPFilterPUU) apply (erule ForallPForallQ) apply auto done subsection \Takewhile, Forall, Filter\ lemma ForallPTakewhileP [simp]: "Forall P (Takewhile P \ x)" by (simp add: Forall_def Takewhile_def sforallPstakewhileP) lemma ForallPTakewhileQ [simp]: "(\x. Q x \ P x) \ Forall P (Takewhile Q \ x)" apply (rule ForallPForallQ) apply (rule ForallPTakewhileP) apply auto done lemma FilterPTakewhileQnil [simp]: "Finite (Takewhile Q \ ys) \ (\x. Q x \ \ P x) \ Filter P \ (Takewhile Q \ ys) = nil" apply (erule ForallnPFilterPnil) apply (rule ForallPForallQ) apply (rule ForallPTakewhileP) apply auto done lemma FilterPTakewhileQid [simp]: "(\x. Q x \ P x) \ Filter P \ (Takewhile Q \ ys) = Takewhile Q \ ys" apply (rule ForallPFilterPid) apply (rule ForallPForallQ) apply (rule ForallPTakewhileP) apply auto done lemma Takewhile_idempotent: "Takewhile P \ (Takewhile P \ s) = Takewhile P \ s" apply (rule_tac x="s" in Seq_induct) apply (simp add: Forall_def sforall_def) apply simp_all done lemma ForallPTakewhileQnP [simp]: "Forall P s \ Takewhile (\x. Q x \ (\ P x)) \ s = Takewhile Q \ s" apply (rule_tac x="s" in Seq_induct) apply (simp add: Forall_def sforall_def) apply simp_all done lemma ForallPDropwhileQnP [simp]: "Forall P s \ Dropwhile (\x. Q x \ (\ P x)) \ s = Dropwhile Q \ s" apply (rule_tac x="s" in Seq_induct) apply (simp add: Forall_def sforall_def) apply simp_all done lemma TakewhileConc1: "Forall P s \ Takewhile P \ (s @@ t) = s @@ (Takewhile P \ t)" apply (rule_tac x="s" in Seq_induct) apply (simp add: Forall_def sforall_def) apply simp_all done lemmas TakewhileConc = TakewhileConc1 [THEN mp] lemma DropwhileConc1: "Finite s \ Forall P s \ Dropwhile P \ (s @@ t) = Dropwhile P \ t" by (erule Seq_Finite_ind) simp_all lemmas DropwhileConc = DropwhileConc1 [THEN mp] subsection \Coinductive characterizations of Filter\ lemma divide_Seq_lemma: "HD \ (Filter P \ y) = Def x \ y = (Takewhile (\x. \ P x) \ y) @@ (x \ TL \ (Dropwhile (\a. \ P a) \ y)) \ Finite (Takewhile (\x. \ P x) \ y) \ P x" (* FIX: pay attention: is only admissible with chain-finite package to be added to adm test and Finite f x admissibility *) apply (rule_tac x="y" in Seq_induct) apply (simp add: adm_subst [OF _ adm_Finite]) apply simp apply simp apply (case_tac "P a") apply simp apply blast text \\\ P a\\ apply simp done lemma divide_Seq: "(x \ xs) \ Filter P \ y \ y = ((Takewhile (\a. \ P a) \ y) @@ (x \ TL \ (Dropwhile (\a. \ P a) \ y))) \ Finite (Takewhile (\a. \ P a) \ y) \ P x" apply (rule divide_Seq_lemma [THEN mp]) apply (drule_tac f="HD" and x="x \ xs" in monofun_cfun_arg) apply simp done lemma nForall_HDFilter: "\ Forall P y \ (\x. HD \ (Filter (\a. \ P a) \ y) = Def x)" unfolding not_Undef_is_Def [symmetric] apply (induct y rule: Seq_induct) apply (simp add: Forall_def sforall_def) apply simp_all done lemma divide_Seq2: "\ Forall P y \ \x. y = Takewhile P\y @@ (x \ TL \ (Dropwhile P \ y)) \ Finite (Takewhile P \ y) \ \ P x" apply (drule nForall_HDFilter [THEN mp]) apply safe apply (rule_tac x="x" in exI) apply (cut_tac P1="\x. \ P x" in divide_Seq_lemma [THEN mp]) apply auto done lemma divide_Seq3: "\ Forall P y \ \x bs rs. y = (bs @@ (x\rs)) \ Finite bs \ Forall P bs \ \ P x" apply (drule divide_Seq2) apply fastforce done lemmas [simp] = FilterPQ FilterConc Conc_cong subsection \Take-lemma\ lemma seq_take_lemma: "(\n. seq_take n \ x = seq_take n \ x') \ x = x'" apply (rule iffI) apply (rule seq.take_lemma) apply auto done lemma take_reduction1: "\n. ((\k. k < n \ seq_take k \ y1 = seq_take k \ y2) \ seq_take n \ (x @@ (t \ y1)) = seq_take n \ (x @@ (t \ y2)))" apply (rule_tac x="x" in Seq_induct) apply simp_all apply (intro strip) apply (case_tac "n") apply auto apply (case_tac "n") apply auto done lemma take_reduction: "x = y \ s = t \ (\k. k < n \ seq_take k \ y1 = seq_take k \ y2) \ seq_take n \ (x @@ (s \ y1)) = seq_take n \ (y @@ (t \ y2))" by (auto intro!: take_reduction1 [rule_format]) text \ Take-lemma and take-reduction for \\\ instead of \=\. \ lemma take_reduction_less1: "\n. ((\k. k < n \ seq_take k \ y1 \ seq_take k\y2) \ seq_take n \ (x @@ (t \ y1)) \ seq_take n \ (x @@ (t \ y2)))" apply (rule_tac x="x" in Seq_induct) apply simp_all apply (intro strip) apply (case_tac "n") apply auto apply (case_tac "n") apply auto done lemma take_reduction_less: "x = y \ s = t \ (\k. k < n \ seq_take k \ y1 \ seq_take k \ y2) \ seq_take n \ (x @@ (s \ y1)) \ seq_take n \ (y @@ (t \ y2))" by (auto intro!: take_reduction_less1 [rule_format]) lemma take_lemma_less1: assumes "\n. seq_take n \ s1 \ seq_take n \ s2" shows "s1 \ s2" apply (rule_tac t="s1" in seq.reach [THEN subst]) apply (rule_tac t="s2" in seq.reach [THEN subst]) apply (rule lub_mono) apply (rule seq.chain_take [THEN ch2ch_Rep_cfunL]) apply (rule seq.chain_take [THEN ch2ch_Rep_cfunL]) apply (rule assms) done lemma take_lemma_less: "(\n. seq_take n \ x \ seq_take n \ x') \ x \ x'" apply (rule iffI) apply (rule take_lemma_less1) apply auto apply (erule monofun_cfun_arg) done text \Take-lemma proof principles.\ lemma take_lemma_principle1: assumes "\s. Forall Q s \ A s \ f s = g s" and "\s1 s2 y. Forall Q s1 \ Finite s1 \ \ Q y \ A (s1 @@ y \ s2) \ f (s1 @@ y \ s2) = g (s1 @@ y \ s2)" shows "A x \ f x = g x" using assms by (cases "Forall Q x") (auto dest!: divide_Seq3) lemma take_lemma_principle2: assumes "\s. Forall Q s \ A s \ f s = g s" and "\s1 s2 y. Forall Q s1 \ Finite s1 \ \ Q y \ A (s1 @@ y \ s2) \ \n. seq_take n \ (f (s1 @@ y \ s2)) = seq_take n \ (g (s1 @@ y \ s2))" shows "A x \ f x = g x" using assms apply (cases "Forall Q x") apply (auto dest!: divide_Seq3) apply (rule seq.take_lemma) apply auto done text \ Note: in the following proofs the ordering of proof steps is very important, as otherwise either \Forall Q s1\ would be in the IH as assumption (then rule useless) or it is not possible to strengthen the IH apply doing a forall closure of the sequence \t\ (then rule also useless). This is also the reason why the induction rule (\nat_less_induct\ or \nat_induct\) has to to be imbuilt into the rule, as induction has to be done early and the take lemma has to be used in the trivial direction afterwards for the \Forall Q x\ case. \ lemma take_lemma_induct: assumes "\s. Forall Q s \ A s \ f s = g s" and "\s1 s2 y n. \t. A t \ seq_take n \ (f t) = seq_take n \ (g t) \ Forall Q s1 \ Finite s1 \ \ Q y \ A (s1 @@ y \ s2) \ seq_take (Suc n) \ (f (s1 @@ y \ s2)) = seq_take (Suc n) \ (g (s1 @@ y \ s2))" shows "A x \ f x = g x" apply (insert assms) apply (rule impI) apply (rule seq.take_lemma) apply (rule mp) prefer 2 apply assumption apply (rule_tac x="x" in spec) apply (rule nat.induct) apply simp apply (rule allI) apply (case_tac "Forall Q xa") apply (force intro!: seq_take_lemma [THEN iffD2, THEN spec]) apply (auto dest!: divide_Seq3) done lemma take_lemma_less_induct: assumes "\s. Forall Q s \ A s \ f s = g s" and "\s1 s2 y n. \t m. m < n \ A t \ seq_take m \ (f t) = seq_take m \ (g t) \ Forall Q s1 \ Finite s1 \ \ Q y \ A (s1 @@ y \ s2) \ seq_take n \ (f (s1 @@ y \ s2)) = seq_take n \ (g (s1 @@ y \ s2))" shows "A x \ f x = g x" apply (insert assms) apply (rule impI) apply (rule seq.take_lemma) apply (rule mp) prefer 2 apply assumption apply (rule_tac x="x" in spec) apply (rule nat_less_induct) apply (rule allI) apply (case_tac "Forall Q xa") apply (force intro!: seq_take_lemma [THEN iffD2, THEN spec]) apply (auto dest!: divide_Seq3) done lemma take_lemma_in_eq_out: assumes "A UU \ f UU = g UU" and "A nil \ f nil = g nil" and "\s y n. \t. A t \ seq_take n \ (f t) = seq_take n \ (g t) \ A (y \ s) \ seq_take (Suc n) \ (f (y \ s)) = seq_take (Suc n) \ (g (y \ s))" shows "A x \ f x = g x" apply (insert assms) apply (rule impI) apply (rule seq.take_lemma) apply (rule mp) prefer 2 apply assumption apply (rule_tac x="x" in spec) apply (rule nat.induct) apply simp apply (rule allI) apply (rule_tac x="xa" in Seq_cases) apply simp_all done subsection \Alternative take_lemma proofs\ subsubsection \Alternative Proof of FilterPQ\ declare FilterPQ [simp del] (*In general: How to do this case without the same adm problems as for the entire proof?*) lemma Filter_lemma1: "Forall (\x. \ (P x \ Q x)) s \ Filter P \ (Filter Q \ s) = Filter (\x. P x \ Q x) \ s" apply (rule_tac x="s" in Seq_induct) apply (simp add: Forall_def sforall_def) apply simp_all done lemma Filter_lemma2: "Finite s \ Forall (\x. \ P x \ \ Q x) s \ Filter P \ (Filter Q \ s) = nil" by (erule Seq_Finite_ind) simp_all lemma Filter_lemma3: "Finite s \ Forall (\x. \ P x \ \ Q x) s \ Filter (\x. P x \ Q x) \ s = nil" by (erule Seq_Finite_ind) simp_all lemma FilterPQ_takelemma: "Filter P \ (Filter Q \ s) = Filter (\x. P x \ Q x) \ s" apply (rule_tac A1="\x. True" and Q1="\x. \ (P x \ Q x)" and x1="s" in take_lemma_induct [THEN mp]) (*better support for A = \x. True*) apply (simp add: Filter_lemma1) apply (simp add: Filter_lemma2 Filter_lemma3) apply simp done declare FilterPQ [simp] subsubsection \Alternative Proof of \MapConc\\ lemma MapConc_takelemma: "Map f \ (x @@ y) = (Map f \ x) @@ (Map f \ y)" apply (rule_tac A1="\x. True" and x1="x" in take_lemma_in_eq_out [THEN mp]) apply auto done ML \ fun Seq_case_tac ctxt s i = Rule_Insts.res_inst_tac ctxt [((("x", 0), Position.none), s)] [] @{thm Seq_cases} i THEN hyp_subst_tac ctxt i THEN hyp_subst_tac ctxt (i + 1) THEN hyp_subst_tac ctxt (i + 2); (* on a\s only simp_tac, as full_simp_tac is uncomplete and often causes errors *) fun Seq_case_simp_tac ctxt s i = Seq_case_tac ctxt s i THEN asm_simp_tac ctxt (i + 2) THEN asm_full_simp_tac ctxt (i + 1) THEN asm_full_simp_tac ctxt i; (* rws are definitions to be unfolded for admissibility check *) fun Seq_induct_tac ctxt s rws i = Rule_Insts.res_inst_tac ctxt [((("x", 0), Position.none), s)] [] @{thm Seq_induct} i THEN (REPEAT_DETERM (CHANGED (asm_simp_tac ctxt (i + 1)))) THEN simp_tac (ctxt addsimps rws) i; fun Seq_Finite_induct_tac ctxt i = eresolve_tac ctxt @{thms Seq_Finite_ind} i THEN (REPEAT_DETERM (CHANGED (asm_simp_tac ctxt i))); fun pair_tac ctxt s = Rule_Insts.res_inst_tac ctxt [((("y", 0), Position.none), s)] [] @{thm prod.exhaust} THEN' hyp_subst_tac ctxt THEN' asm_full_simp_tac ctxt; (* induction on a sequence of pairs with pairsplitting and simplification *) fun pair_induct_tac ctxt s rws i = Rule_Insts.res_inst_tac ctxt [((("x", 0), Position.none), s)] [] @{thm Seq_induct} i THEN pair_tac ctxt "a" (i + 3) THEN (REPEAT_DETERM (CHANGED (simp_tac ctxt (i + 1)))) THEN simp_tac (ctxt addsimps rws) i; \ method_setup Seq_case = \Scan.lift Args.embedded >> (fn s => fn ctxt => SIMPLE_METHOD' (Seq_case_tac ctxt s))\ method_setup Seq_case_simp = \Scan.lift Args.embedded >> (fn s => fn ctxt => SIMPLE_METHOD' (Seq_case_simp_tac ctxt s))\ method_setup Seq_induct = \Scan.lift Args.embedded -- Scan.optional ((Scan.lift (Args.$$$ "simp" -- Args.colon) |-- Attrib.thms)) [] >> (fn (s, rws) => fn ctxt => SIMPLE_METHOD' (Seq_induct_tac ctxt s rws))\ method_setup Seq_Finite_induct = \Scan.succeed (SIMPLE_METHOD' o Seq_Finite_induct_tac)\ method_setup pair = \Scan.lift Args.embedded >> (fn s => fn ctxt => SIMPLE_METHOD' (pair_tac ctxt s))\ method_setup pair_induct = \Scan.lift Args.embedded -- Scan.optional ((Scan.lift (Args.$$$ "simp" -- Args.colon) |-- Attrib.thms)) [] >> (fn (s, rws) => fn ctxt => SIMPLE_METHOD' (pair_induct_tac ctxt s rws))\ lemma Mapnil: "Map f \ s = nil \ s = nil" by (Seq_case_simp s) lemma MapUU: "Map f \ s = UU \ s = UU" by (Seq_case_simp s) lemma MapTL: "Map f \ (TL \ s) = TL \ (Map f \ s)" by (Seq_induct s) end