(* Title: HOL/HOLCF/IOA/Seq.thy Author: Olaf Müller *) section \Partial, Finite and Infinite Sequences (lazy lists), modeled as domain\ theory Seq imports HOLCF begin default_sort pcpo domain (unsafe) 'a seq = nil ("nil") | cons (HD :: 'a) (lazy TL :: "'a seq") (infixr "##" 65) inductive Finite :: "'a seq \ bool" where sfinite_0: "Finite nil" | sfinite_n: "Finite tr \ a \ UU \ Finite (a ## tr)" declare Finite.intros [simp] definition Partial :: "'a seq \ bool" where "Partial x \ seq_finite x \ \ Finite x" definition Infinite :: "'a seq \ bool" where "Infinite x \ \ seq_finite x" subsection \Recursive equations of operators\ subsubsection \\smap\\ fixrec smap :: "('a \ 'b) \ 'a seq \ 'b seq" where smap_nil: "smap \ f \ nil = nil" | smap_cons: "x \ UU \ smap \ f \ (x ## xs) = (f \ x) ## smap \ f \ xs" lemma smap_UU [simp]: "smap \ f \ UU = UU" by fixrec_simp subsubsection \\sfilter\\ fixrec sfilter :: "('a \ tr) \ 'a seq \ 'a seq" where sfilter_nil: "sfilter \ P \ nil = nil" | sfilter_cons: "x \ UU \ sfilter \ P \ (x ## xs) = (If P \ x then x ## (sfilter \ P \ xs) else sfilter \ P \ xs)" lemma sfilter_UU [simp]: "sfilter \ P \ UU = UU" by fixrec_simp subsubsection \\sforall2\\ fixrec sforall2 :: "('a \ tr) \ 'a seq \ tr" where sforall2_nil: "sforall2 \ P \ nil = TT" | sforall2_cons: "x \ UU \ sforall2 \ P \ (x ## xs) = ((P \ x) andalso sforall2 \ P \ xs)" lemma sforall2_UU [simp]: "sforall2 \ P \ UU = UU" by fixrec_simp definition "sforall P t \ sforall2 \ P \ t \ FF" subsubsection \\stakewhile\\ fixrec stakewhile :: "('a \ tr) \ 'a seq \ 'a seq" where stakewhile_nil: "stakewhile \ P \ nil = nil" | stakewhile_cons: "x \ UU \ stakewhile \ P \ (x ## xs) = (If P \ x then x ## (stakewhile \ P \ xs) else nil)" lemma stakewhile_UU [simp]: "stakewhile \ P \ UU = UU" by fixrec_simp subsubsection \\sdropwhile\\ fixrec sdropwhile :: "('a \ tr) \ 'a seq \ 'a seq" where sdropwhile_nil: "sdropwhile \ P \ nil = nil" | sdropwhile_cons: "x \ UU \ sdropwhile \ P \ (x ## xs) = (If P \ x then sdropwhile \ P \ xs else x ## xs)" lemma sdropwhile_UU [simp]: "sdropwhile \ P \ UU = UU" by fixrec_simp subsubsection \\slast\\ fixrec slast :: "'a seq \ 'a" where slast_nil: "slast \ nil = UU" | slast_cons: "x \ UU \ slast \ (x ## xs) = (If is_nil \ xs then x else slast \ xs)" lemma slast_UU [simp]: "slast \ UU = UU" by fixrec_simp subsubsection \\sconc\\ fixrec sconc :: "'a seq \ 'a seq \ 'a seq" where sconc_nil: "sconc \ nil \ y = y" | sconc_cons': "x \ UU \ sconc \ (x ## xs) \ y = x ## (sconc \ xs \ y)" abbreviation sconc_syn :: "'a seq \ 'a seq \ 'a seq" (infixr "@@" 65) where "xs @@ ys \ sconc \ xs \ ys" lemma sconc_UU [simp]: "UU @@ y = UU" by fixrec_simp lemma sconc_cons [simp]: "(x ## xs) @@ y = x ## (xs @@ y)" by (cases "x = UU") simp_all declare sconc_cons' [simp del] subsubsection \\sflat\\ fixrec sflat :: "'a seq seq \ 'a seq" where sflat_nil: "sflat \ nil = nil" | sflat_cons': "x \ UU \ sflat \ (x ## xs) = x @@ (sflat \ xs)" lemma sflat_UU [simp]: "sflat \ UU = UU" by fixrec_simp lemma sflat_cons [simp]: "sflat \ (x ## xs) = x @@ (sflat \ xs)" by (cases "x = UU") simp_all declare sflat_cons' [simp del] subsubsection \\szip\\ fixrec szip :: "'a seq \ 'b seq \ ('a \ 'b) seq" where szip_nil: "szip \ nil \ y = nil" | szip_cons_nil: "x \ UU \ szip \ (x ## xs) \ nil = UU" | szip_cons: "x \ UU \ y \ UU \ szip \ (x ## xs) \ (y ## ys) = (x, y) ## szip \ xs \ ys" lemma szip_UU1 [simp]: "szip \ UU \ y = UU" by fixrec_simp lemma szip_UU2 [simp]: "x \ nil \ szip \ x \ UU = UU" by (cases x) (simp_all, fixrec_simp) subsection \\scons\, \nil\\ lemma scons_inject_eq: "x \ UU \ y \ UU \ x ## xs = y ## ys \ x = y \ xs = ys" by simp lemma nil_less_is_nil: "nil \ x \ nil = x" by (cases x) simp_all subsection \\sfilter\, \sforall\, \sconc\\ lemma if_and_sconc [simp]: "(if b then tr1 else tr2) @@ tr = (if b then tr1 @@ tr else tr2 @@ tr)" by simp lemma sfiltersconc: "sfilter \ P \ (x @@ y) = (sfilter \ P \ x @@ sfilter \ P \ y)" apply (induct x) text \adm\ apply simp text \base cases\ apply simp apply simp text \main case\ apply (rule_tac p = "P\a" in trE) apply simp apply simp apply simp done lemma sforallPstakewhileP: "sforall P (stakewhile \ P \ x)" apply (simp add: sforall_def) apply (induct x) text \adm\ apply simp text \base cases\ apply simp apply simp text \main case\ apply (rule_tac p = "P\a" in trE) apply simp apply simp apply simp done lemma forallPsfilterP: "sforall P (sfilter \ P \ x)" apply (simp add: sforall_def) apply (induct x) text \adm\ apply simp text \base cases\ apply simp apply simp text \main case\ apply (rule_tac p="P\a" in trE) apply simp apply simp apply simp done subsection \Finite\ (* Proofs of rewrite rules for Finite: 1. Finite nil (by definition) 2. \ Finite UU 3. a \ UU \ Finite (a ## x) = Finite x *) lemma Finite_UU_a: "Finite x \ x \ UU" apply (rule impI) apply (erule Finite.induct) apply simp apply simp done lemma Finite_UU [simp]: "\ Finite UU" using Finite_UU_a [where x = UU] by fast lemma Finite_cons_a: "Finite x \ a \ UU \ x = a ## xs \ Finite xs" apply (intro strip) apply (erule Finite.cases) apply fastforce apply simp done lemma Finite_cons: "a \ UU \ Finite (a##x) \ Finite x" apply (rule iffI) apply (erule (1) Finite_cons_a [rule_format]) apply fast apply simp done lemma Finite_upward: "Finite x \ x \ y \ Finite y" apply (induct arbitrary: y set: Finite) apply (case_tac y, simp, simp, simp) apply (case_tac y, simp, simp) apply simp done lemma adm_Finite [simp]: "adm Finite" by (rule adm_upward) (rule Finite_upward) subsection \Induction\ text \Extensions to Induction Theorems.\ lemma seq_finite_ind_lemma: assumes "\n. P (seq_take n \ s)" shows "seq_finite s \ P s" apply (unfold seq.finite_def) apply (intro strip) apply (erule exE) apply (erule subst) apply (rule assms) done lemma seq_finite_ind: assumes "P UU" and "P nil" and "\x s1. x \ UU \ P s1 \ P (x ## s1)" shows "seq_finite s \ P s" apply (insert assms) apply (rule seq_finite_ind_lemma) apply (erule seq.finite_induct) apply assumption apply simp done end