(* Title: ZF/UNITY/Mutex.thy Author: Sidi O Ehmety, Computer Laboratory Copyright 2001 University of Cambridge Based on "A Family of 2-Process Mutual Exclusion Algorithms" by J Misra. Variables' types are introduced globally so that type verification reduces to the usual ZF typechecking \ an ill-tyed expression will reduce to the empty set. *) section\Mutual Exclusion\ theory Mutex imports SubstAx begin text\Based on "A Family of 2-Process Mutual Exclusion Algorithms" by J Misra Variables' types are introduced globally so that type verification reduces to the usual ZF typechecking: an ill-tyed expressions reduce to the empty set. \ abbreviation "p == Var([0])" abbreviation "m == Var([1])" abbreviation "n == Var([0,0])" abbreviation "u == Var([0,1])" abbreviation "v == Var([1,0])" axiomatization where \ \Type declarations\ p_type: "type_of(p)=bool & default_val(p)=0" and m_type: "type_of(m)=int & default_val(m)=#0" and n_type: "type_of(n)=int & default_val(n)=#0" and u_type: "type_of(u)=bool & default_val(u)=0" and v_type: "type_of(v)=bool & default_val(v)=0" definition (** The program for process U **) "U0 == {:state*state. t = s(u:=1, m:=#1) & s`m = #0}" definition "U1 == {:state*state. t = s(p:= s`v, m:=#2) & s`m = #1}" definition "U2 == {:state*state. t = s(m:=#3) & s`p=0 & s`m = #2}" definition "U3 == {:state*state. t=s(u:=0, m:=#4) & s`m = #3}" definition "U4 == {:state*state. t = s(p:=1, m:=#0) & s`m = #4}" (** The program for process V **) definition "V0 == {:state*state. t = s (v:=1, n:=#1) & s`n = #0}" definition "V1 == {:state*state. t = s(p:=not(s`u), n:=#2) & s`n = #1}" definition "V2 == {:state*state. t = s(n:=#3) & s`p=1 & s`n = #2}" definition "V3 == {:state*state. t = s (v:=0, n:=#4) & s`n = #3}" definition "V4 == {:state*state. t = s (p:=0, n:=#0) & s`n = #4}" definition "Mutex == mk_program({s:state. s`u=0 & s`v=0 & s`m = #0 & s`n = #0}, {U0, U1, U2, U3, U4, V0, V1, V2, V3, V4}, Pow(state*state))" (** The correct invariants **) definition "IU == {s:state. (s`u = 1\(#1 $\ s`m & s`m $\ #3)) & (s`m = #3 \ s`p=0)}" definition "IV == {s:state. (s`v = 1 \ (#1 $\ s`n & s`n $\ #3)) & (s`n = #3 \ s`p=1)}" (** The faulty invariant (for U alone) **) definition "bad_IU == {s:state. (s`u = 1 \ (#1 $\ s`m & s`m $\ #3))& (#3 $\ s`m & s`m $\ #4 \ s`p=0)}" (** Variables' types **) declare p_type [simp] u_type [simp] v_type [simp] m_type [simp] n_type [simp] lemma u_value_type: "s \ state ==>s`u \ bool" apply (unfold state_def) apply (drule_tac a = u in apply_type, auto) done lemma v_value_type: "s \ state ==> s`v \ bool" apply (unfold state_def) apply (drule_tac a = v in apply_type, auto) done lemma p_value_type: "s \ state ==> s`p \ bool" apply (unfold state_def) apply (drule_tac a = p in apply_type, auto) done lemma m_value_type: "s \ state ==> s`m \ int" apply (unfold state_def) apply (drule_tac a = m in apply_type, auto) done lemma n_value_type: "s \ state ==>s`n \ int" apply (unfold state_def) apply (drule_tac a = n in apply_type, auto) done declare p_value_type [simp] u_value_type [simp] v_value_type [simp] m_value_type [simp] n_value_type [simp] declare p_value_type [TC] u_value_type [TC] v_value_type [TC] m_value_type [TC] n_value_type [TC] text\Mutex is a program\ lemma Mutex_in_program [simp,TC]: "Mutex \ program" by (simp add: Mutex_def) declare Mutex_def [THEN def_prg_Init, simp] declare Mutex_def [program] declare U0_def [THEN def_act_simp, simp] declare U1_def [THEN def_act_simp, simp] declare U2_def [THEN def_act_simp, simp] declare U3_def [THEN def_act_simp, simp] declare U4_def [THEN def_act_simp, simp] declare V0_def [THEN def_act_simp, simp] declare V1_def [THEN def_act_simp, simp] declare V2_def [THEN def_act_simp, simp] declare V3_def [THEN def_act_simp, simp] declare V4_def [THEN def_act_simp, simp] declare U0_def [THEN def_set_simp, simp] declare U1_def [THEN def_set_simp, simp] declare U2_def [THEN def_set_simp, simp] declare U3_def [THEN def_set_simp, simp] declare U4_def [THEN def_set_simp, simp] declare V0_def [THEN def_set_simp, simp] declare V1_def [THEN def_set_simp, simp] declare V2_def [THEN def_set_simp, simp] declare V3_def [THEN def_set_simp, simp] declare V4_def [THEN def_set_simp, simp] declare IU_def [THEN def_set_simp, simp] declare IV_def [THEN def_set_simp, simp] declare bad_IU_def [THEN def_set_simp, simp] lemma IU: "Mutex \ Always(IU)" apply (rule AlwaysI, force) apply (unfold Mutex_def, safety, auto) done lemma IV: "Mutex \ Always(IV)" apply (rule AlwaysI, force) apply (unfold Mutex_def, safety) done (*The safety property: mutual exclusion*) lemma mutual_exclusion: "Mutex \ Always({s \ state. ~(s`m = #3 & s`n = #3)})" apply (rule Always_weaken) apply (rule Always_Int_I [OF IU IV], auto) done (*The bad invariant FAILS in V1*) lemma less_lemma: "[| x$<#1; #3 $\ x |] ==> P" apply (drule_tac j = "#1" and k = "#3" in zless_zle_trans) apply (drule_tac [2] j = x in zle_zless_trans, auto) done lemma "Mutex \ Always(bad_IU)" apply (rule AlwaysI, force) apply (unfold Mutex_def, safety, auto) apply (subgoal_tac "#1 $\ #3") apply (drule_tac x = "#1" and y = "#3" in zle_trans, auto) apply (simp (no_asm) add: not_zless_iff_zle [THEN iff_sym]) apply auto (*Resulting state: n=1, p=false, m=4, u=false. Execution of V1 (the command of process v guarded by n=1) sets p:=true, violating the invariant!*) oops (*** Progress for U ***) lemma U_F0: "Mutex \ {s \ state. s`m=#2} Unless {s \ state. s`m=#3}" by (unfold op_Unless_def Mutex_def, safety) lemma U_F1: "Mutex \ {s \ state. s`m=#1} \w {s \ state. s`p = s`v & s`m = #2}" by (unfold Mutex_def, ensures U1) lemma U_F2: "Mutex \ {s \ state. s`p =0 & s`m = #2} \w {s \ state. s`m = #3}" apply (cut_tac IU) apply (unfold Mutex_def, ensures U2) done lemma U_F3: "Mutex \ {s \ state. s`m = #3} \w {s \ state. s`p=1}" apply (rule_tac B = "{s \ state. s`m = #4}" in LeadsTo_Trans) apply (unfold Mutex_def) apply (ensures U3) apply (ensures U4) done lemma U_lemma2: "Mutex \ {s \ state. s`m = #2} \w {s \ state. s`p=1}" apply (rule LeadsTo_Diff [OF LeadsTo_weaken_L Int_lower2 [THEN subset_imp_LeadsTo]]) apply (rule LeadsTo_Trans [OF U_F2 U_F3], auto) apply (auto dest!: p_value_type simp add: bool_def) done lemma U_lemma1: "Mutex \ {s \ state. s`m = #1} \w {s \ state. s`p =1}" by (rule LeadsTo_Trans [OF U_F1 [THEN LeadsTo_weaken_R] U_lemma2], blast) lemma eq_123: "i \ int ==> (#1 $\ i & i $\ #3) \ (i=#1 | i=#2 | i=#3)" apply auto apply (auto simp add: neq_iff_zless) apply (drule_tac [4] j = "#3" and i = i in zle_zless_trans) apply (drule_tac [2] j = i and i = "#1" in zle_zless_trans) apply (drule_tac j = i and i = "#1" in zle_zless_trans, auto) apply (rule zle_anti_sym) apply (simp_all (no_asm_simp) add: zless_add1_iff_zle [THEN iff_sym]) done lemma U_lemma123: "Mutex \ {s \ state. #1 $\ s`m & s`m $\ #3} \w {s \ state. s`p=1}" by (simp add: eq_123 Collect_disj_eq LeadsTo_Un_distrib U_lemma1 U_lemma2 U_F3) (*Misra's F4*) lemma u_Leadsto_p: "Mutex \ {s \ state. s`u = 1} \w {s \ state. s`p=1}" by (rule Always_LeadsTo_weaken [OF IU U_lemma123], auto) (*** Progress for V ***) lemma V_F0: "Mutex \ {s \ state. s`n=#2} Unless {s \ state. s`n=#3}" by (unfold op_Unless_def Mutex_def, safety) lemma V_F1: "Mutex \ {s \ state. s`n=#1} \w {s \ state. s`p = not(s`u) & s`n = #2}" by (unfold Mutex_def, ensures "V1") lemma V_F2: "Mutex \ {s \ state. s`p=1 & s`n = #2} \w {s \ state. s`n = #3}" apply (cut_tac IV) apply (unfold Mutex_def, ensures "V2") done lemma V_F3: "Mutex \ {s \ state. s`n = #3} \w {s \ state. s`p=0}" apply (rule_tac B = "{s \ state. s`n = #4}" in LeadsTo_Trans) apply (unfold Mutex_def) apply (ensures V3) apply (ensures V4) done lemma V_lemma2: "Mutex \ {s \ state. s`n = #2} \w {s \ state. s`p=0}" apply (rule LeadsTo_Diff [OF LeadsTo_weaken_L Int_lower2 [THEN subset_imp_LeadsTo]]) apply (rule LeadsTo_Trans [OF V_F2 V_F3], auto) apply (auto dest!: p_value_type simp add: bool_def) done lemma V_lemma1: "Mutex \ {s \ state. s`n = #1} \w {s \ state. s`p = 0}" by (rule LeadsTo_Trans [OF V_F1 [THEN LeadsTo_weaken_R] V_lemma2], blast) lemma V_lemma123: "Mutex \ {s \ state. #1 $\ s`n & s`n $\ #3} \w {s \ state. s`p = 0}" by (simp add: eq_123 Collect_disj_eq LeadsTo_Un_distrib V_lemma1 V_lemma2 V_F3) (*Misra's F4*) lemma v_Leadsto_not_p: "Mutex \ {s \ state. s`v = 1} \w {s \ state. s`p = 0}" by (rule Always_LeadsTo_weaken [OF IV V_lemma123], auto) (** Absence of starvation **) (*Misra's F6*) lemma m1_Leadsto_3: "Mutex \ {s \ state. s`m = #1} \w {s \ state. s`m = #3}" apply (rule LeadsTo_cancel2 [THEN LeadsTo_Un_duplicate]) apply (rule_tac [2] U_F2) apply (simp add: Collect_conj_eq) apply (subst Un_commute) apply (rule LeadsTo_cancel2 [THEN LeadsTo_Un_duplicate]) apply (rule_tac [2] PSP_Unless [OF v_Leadsto_not_p U_F0]) apply (rule U_F1 [THEN LeadsTo_weaken_R], auto) apply (auto dest!: v_value_type simp add: bool_def) done (*The same for V*) lemma n1_Leadsto_3: "Mutex \ {s \ state. s`n = #1} \w {s \ state. s`n = #3}" apply (rule LeadsTo_cancel2 [THEN LeadsTo_Un_duplicate]) apply (rule_tac [2] V_F2) apply (simp add: Collect_conj_eq) apply (subst Un_commute) apply (rule LeadsTo_cancel2 [THEN LeadsTo_Un_duplicate]) apply (rule_tac [2] PSP_Unless [OF u_Leadsto_p V_F0]) apply (rule V_F1 [THEN LeadsTo_weaken_R], auto) apply (auto dest!: u_value_type simp add: bool_def) done end