(* Title: ZF/UNITY/Merge.thy Author: Sidi O Ehmety, Cambridge University Computer Laboratory Copyright 2002 University of Cambridge A multiple-client allocator from a single-client allocator: Merge specification. *) theory Merge imports AllocBase Follows Guar GenPrefix begin (** Merge specification (the number of inputs is Nclients) ***) (** Parameter A represents the type of items to Merge **) definition (*spec (10)*) merge_increasing :: "[i, i, i] =>i" where "merge_increasing(A, Out, iOut) == program guarantees (lift(Out) IncreasingWrt prefix(A)/list(A)) Int (lift(iOut) IncreasingWrt prefix(nat)/list(nat))" definition (*spec (11)*) merge_eq_Out :: "[i, i] =>i" where "merge_eq_Out(Out, iOut) == program guarantees Always({s \ state. length(s`Out) = length(s`iOut)})" definition (*spec (12)*) merge_bounded :: "i=>i" where "merge_bounded(iOut) == program guarantees Always({s \ state. \elt \ set_of_list(s`iOut). elti, i, i] =>i" where "merge_follows(A, In, Out, iOut) == (\n \ Nclients. lift(In(n)) IncreasingWrt prefix(A)/list(A)) guarantees (\n \ Nclients. (%s. sublist(s`Out, {k \ nat. k < length(s`iOut) & nth(k, s`iOut) = n})) Fols lift(In(n)) Wrt prefix(A)/list(A))" definition (*spec: preserves part*) merge_preserves :: "[i=>i] =>i" where "merge_preserves(In) == \n \ nat. preserves(lift(In(n)))" definition (* environmental constraints*) merge_allowed_acts :: "[i, i] =>i" where "merge_allowed_acts(Out, iOut) == {F \ program. AllowedActs(F) = cons(id(state), (\G \ preserves(lift(Out)) \ preserves(lift(iOut)). Acts(G)))}" definition merge_spec :: "[i, i =>i, i, i]=>i" where "merge_spec(A, In, Out, iOut) == merge_increasing(A, Out, iOut) \ merge_eq_Out(Out, iOut) \ merge_bounded(iOut) \ merge_follows(A, In, Out, iOut) \ merge_allowed_acts(Out, iOut) \ merge_preserves(In)" (** State definitions. OUTPUT variables are locals **) locale merge = fixes In \ \merge's INPUT histories: streams to merge\ and Out \ \merge's OUTPUT history: merged items\ and iOut \ \merge's OUTPUT history: origins of merged items\ and A \ \the type of items being merged\ and M assumes var_assumes [simp]: "(\n. In(n):var) & Out \ var & iOut \ var" and all_distinct_vars: "\n. all_distinct([In(n), Out, iOut])" and type_assumes [simp]: "(\n. type_of(In(n))=list(A)) & type_of(Out)=list(A) & type_of(iOut)=list(nat)" and default_val_assumes [simp]: "(\n. default_val(In(n))=Nil) & default_val(Out)=Nil & default_val(iOut)=Nil" and merge_spec: "M \ merge_spec(A, In, Out, iOut)" lemma (in merge) In_value_type [TC,simp]: "s \ state ==> s`In(n) \ list(A)" apply (unfold state_def) apply (drule_tac a = "In (n)" in apply_type) apply auto done lemma (in merge) Out_value_type [TC,simp]: "s \ state ==> s`Out \ list(A)" apply (unfold state_def) apply (drule_tac a = Out in apply_type, auto) done lemma (in merge) iOut_value_type [TC,simp]: "s \ state ==> s`iOut \ list(nat)" apply (unfold state_def) apply (drule_tac a = iOut in apply_type, auto) done lemma (in merge) M_in_program [intro,simp]: "M \ program" apply (cut_tac merge_spec) apply (auto dest: guarantees_type [THEN subsetD] simp add: merge_spec_def merge_increasing_def) done lemma (in merge) merge_Allowed: "Allowed(M) = (preserves(lift(Out)) \ preserves(lift(iOut)))" apply (insert merge_spec preserves_type [of "lift (Out)"]) apply (auto simp add: merge_spec_def merge_allowed_acts_def Allowed_def safety_prop_Acts_iff) done lemma (in merge) M_ok_iff: "G \ program ==> M ok G \ (G \ preserves(lift(Out)) & G \ preserves(lift(iOut)) & M \ Allowed(G))" apply (cut_tac merge_spec) apply (auto simp add: merge_Allowed ok_iff_Allowed) done lemma (in merge) merge_Always_Out_eq_iOut: "[| G \ preserves(lift(Out)); G \ preserves(lift(iOut)); M \ Allowed(G) |] ==> M \ G \ Always({s \ state. length(s`Out)=length(s`iOut)})" apply (frule preserves_type [THEN subsetD]) apply (subgoal_tac "G \ program") prefer 2 apply assumption apply (frule M_ok_iff) apply (cut_tac merge_spec) apply (force dest: guaranteesD simp add: merge_spec_def merge_eq_Out_def) done lemma (in merge) merge_Bounded: "[| G \ preserves(lift(iOut)); G \ preserves(lift(Out)); M \ Allowed(G) |] ==> M \ G: Always({s \ state. \elt \ set_of_list(s`iOut). elt preserves(lift(iOut)); G: preserves(lift(Out)); M \ Allowed(G) |] ==> M \ G \ Always ({s \ state. msetsum(%i. bag_of(sublist(s`Out, {k \ nat. k < length(s`iOut) & nth(k, s`iOut)=i})), Nclients, A) = bag_of(s`Out)})" apply (rule Always_Diff_Un_eq [THEN iffD1]) apply (rule_tac [2] state_AlwaysI [THEN Always_weaken]) apply (rule Always_Int_I [OF merge_Always_Out_eq_iOut merge_Bounded], auto) apply (subst bag_of_sublist_UN_disjoint [symmetric]) apply (auto simp add: nat_into_Finite set_of_list_conv_nth [OF iOut_value_type]) apply (subgoal_tac " (\i \ Nclients. {k \ nat. k < length (x`iOut) & nth (k, x`iOut) = i}) = length (x`iOut) ") apply (auto simp add: sublist_upt_eq_take [OF Out_value_type] length_type [OF iOut_value_type] take_all [OF _ Out_value_type] length_type [OF iOut_value_type]) apply (rule equalityI) apply (blast dest: ltD, clarify) apply (subgoal_tac "length (x ` iOut) \ nat") prefer 2 apply (simp add: length_type [OF iOut_value_type]) apply (subgoal_tac "xa \ nat") apply (simp_all add: Ord_mem_iff_lt) prefer 2 apply (blast intro: lt_trans) apply (drule_tac x = "nth (xa, x`iOut)" and P = "%elt. X (elt) \ elt (\n \ Nclients. lift(In(n)) IncreasingWrt prefix(A)/list(A)) guarantees (%s. bag_of(s`Out)) Fols (%s. msetsum(%i. bag_of(s`In(i)),Nclients, A)) Wrt MultLe(A, r)/Mult(A)" apply (cut_tac merge_spec) apply (rule merge_bag_Follows_lemma [THEN Always_Follows1, THEN guaranteesI]) apply (simp_all add: M_ok_iff, clarify) apply (rule Follows_state_ofD1 [OF Follows_msetsum_UN]) apply (simp_all add: nat_into_Finite bag_of_multiset [of _ A]) apply (simp add: INT_iff merge_spec_def merge_follows_def, clarify) apply (cut_tac merge_spec) apply (subgoal_tac "M ok G") prefer 2 apply (force intro: M_ok_iff [THEN iffD2]) apply (drule guaranteesD, assumption) apply (simp add: merge_spec_def merge_follows_def, blast) apply (simp cong add: Follows_cong add: refl_prefix mono_bag_of [THEN subset_Follows_comp, THEN subsetD, unfolded metacomp_def]) done end