(* Title: ZF/UNITY/Follows.thy Author: Sidi O Ehmety, Cambridge University Computer Laboratory Copyright 2002 University of Cambridge Theory ported from HOL. *) section\The "Follows" relation of Charpentier and Sivilotte\ theory Follows imports SubstAx Increasing begin definition Follows :: "[i, i, i=>i, i=>i] => i" where "Follows(A, r, f, g) == Increasing(A, r, g) Int Increasing(A, r,f) Int Always({s \ state. :r}) Int (\k \ A. {s \ state. :r} \w {s \ state. :r})" abbreviation Incr :: "[i=>i]=>i" where "Incr(f) == Increasing(list(nat), prefix(nat), f)" abbreviation n_Incr :: "[i=>i]=>i" where "n_Incr(f) == Increasing(nat, Le, f)" abbreviation s_Incr :: "[i=>i]=>i" where "s_Incr(f) == Increasing(Pow(nat), SetLe(nat), f)" abbreviation m_Incr :: "[i=>i]=>i" where "m_Incr(f) == Increasing(Mult(nat), MultLe(nat, Le), f)" abbreviation n_Fols :: "[i=>i, i=>i]=>i" (infixl "n'_Fols" 65) where "f n_Fols g == Follows(nat, Le, f, g)" abbreviation Follows' :: "[i=>i, i=>i, i, i] => i" ("(_ /Fols _ /Wrt (_ /'/ _))" [60, 0, 0, 60] 60) where "f Fols g Wrt r/A == Follows(A,r,f,g)" (*Does this hold for "invariant"?*) lemma Follows_cong: "[|A=A'; r=r'; !!x. x \ state ==> f(x)=f'(x); !!x. x \ state ==> g(x)=g'(x)|] ==> Follows(A, r, f, g) = Follows(A', r', f', g')" by (simp add: Increasing_def Follows_def) lemma subset_Always_comp: "[| mono1(A, r, B, s, h); \x \ state. f(x):A & g(x):A |] ==> Always({x \ state. \ r})<=Always({x \ state. <(h comp f)(x), (h comp g)(x)> \ s})" apply (unfold mono1_def metacomp_def) apply (auto simp add: Always_eq_includes_reachable) done lemma imp_Always_comp: "[| F \ Always({x \ state. \ r}); mono1(A, r, B, s, h); \x \ state. f(x):A & g(x):A |] ==> F \ Always({x \ state. <(h comp f)(x), (h comp g)(x)> \ s})" by (blast intro: subset_Always_comp [THEN subsetD]) lemma imp_Always_comp2: "[| F \ Always({x \ state. \ r}); F \ Always({x \ state. \ s}); mono2(A, r, B, s, C, t, h); \x \ state. f1(x):A & f(x):A & g1(x):B & g(x):B |] ==> F \ Always({x \ state. \ t})" apply (auto simp add: Always_eq_includes_reachable mono2_def) apply (auto dest!: subsetD) done (* comp LeadsTo *) lemma subset_LeadsTo_comp: "[| mono1(A, r, B, s, h); refl(A,r); trans[B](s); \x \ state. f(x):A & g(x):A |] ==> (\j \ A. {s \ state. \ r} \w {s \ state. \ r}) <= (\k \ B. {x \ state. \ s} \w {x \ state. \ s})" apply (unfold mono1_def metacomp_def, clarify) apply (simp_all (no_asm_use) add: INT_iff) apply auto apply (rule single_LeadsTo_I) prefer 2 apply (blast dest: LeadsTo_type [THEN subsetD], auto) apply (rotate_tac 5) apply (drule_tac x = "g (sa) " in bspec) apply (erule_tac [2] LeadsTo_weaken) apply (auto simp add: part_order_def refl_def) apply (rule_tac b = "h (g (sa))" in trans_onD) apply blast apply auto done lemma imp_LeadsTo_comp: "[| F:(\j \ A. {s \ state. \ r} \w {s \ state. \ r}); mono1(A, r, B, s, h); refl(A,r); trans[B](s); \x \ state. f(x):A & g(x):A |] ==> F:(\k \ B. {x \ state. \ s} \w {x \ state. \ s})" apply (rule subset_LeadsTo_comp [THEN subsetD], auto) done lemma imp_LeadsTo_comp_right: "[| F \ Increasing(B, s, g); \j \ A. F: {s \ state. \ r} \w {s \ state. \ r}; mono2(A, r, B, s, C, t, h); refl(A, r); refl(B, s); trans[C](t); \x \ state. f1(x):A & f(x):A & g(x):B; k \ C |] ==> F:{x \ state. \ t} \w {x \ state. \ t}" apply (unfold mono2_def Increasing_def) apply (rule single_LeadsTo_I, auto) apply (drule_tac x = "g (sa) " and A = B in bspec) apply auto apply (drule_tac x = "f (sa) " and P = "%j. F \ X(j) \w Y(j)" for X Y in bspec) apply auto apply (rule PSP_Stable [THEN LeadsTo_weaken], blast, blast) apply auto apply (force simp add: part_order_def refl_def) apply (force simp add: part_order_def refl_def) apply (drule_tac x = "f1 (x)" and x1 = "f (sa) " and P2 = "%x y. \u\B. P (x,y,u)" for P in bspec [THEN bspec]) apply (drule_tac [3] x = "g (x) " and x1 = "g (sa) " and P2 = "%x y. P (x,y) \ d (x,y) \ t" for P d in bspec [THEN bspec]) apply auto apply (rule_tac b = "h (f (sa), g (sa))" and A = C in trans_onD) apply (auto simp add: part_order_def) done lemma imp_LeadsTo_comp_left: "[| F \ Increasing(A, r, f); \j \ B. F: {x \ state. \ s} \w {x \ state. \ s}; mono2(A, r, B, s, C, t, h); refl(A,r); refl(B, s); trans[C](t); \x \ state. f(x):A & g1(x):B & g(x):B; k \ C |] ==> F:{x \ state. \ t} \w {x \ state. \ t}" apply (unfold mono2_def Increasing_def) apply (rule single_LeadsTo_I, auto) apply (drule_tac x = "f (sa) " and P = "%k. F \ Stable (X (k))" for X in bspec) apply auto apply (drule_tac x = "g (sa) " in bspec) apply auto apply (rule PSP_Stable [THEN LeadsTo_weaken], blast, blast) apply auto apply (force simp add: part_order_def refl_def) apply (force simp add: part_order_def refl_def) apply (drule_tac x = "f (x) " and x1 = "f (sa) " in bspec [THEN bspec]) apply (drule_tac [3] x = "g1 (x) " and x1 = "g (sa) " and P2 = "%x y. P (x,y) \ d (x,y) \ t" for P d in bspec [THEN bspec]) apply auto apply (rule_tac b = "h (f (sa), g (sa))" and A = C in trans_onD) apply (auto simp add: part_order_def) done (** This general result is used to prove Follows Un, munion, etc. **) lemma imp_LeadsTo_comp2: "[| F \ Increasing(A, r, f1) \ Increasing(B, s, g); \j \ A. F: {s \ state. \ r} \w {s \ state. \ r}; \j \ B. F: {x \ state. \ s} \w {x \ state. \ s}; mono2(A, r, B, s, C, t, h); refl(A,r); refl(B, s); trans[C](t); \x \ state. f(x):A & g1(x):B & f1(x):A &g(x):B; k \ C |] ==> F:{x \ state. \ t} \w {x \ state. \ t}" apply (rule_tac B = "{x \ state. \ t}" in LeadsTo_Trans) apply (blast intro: imp_LeadsTo_comp_right) apply (blast intro: imp_LeadsTo_comp_left) done (* Follows type *) lemma Follows_type: "Follows(A, r, f, g)<=program" apply (unfold Follows_def) apply (blast dest: Increasing_type [THEN subsetD]) done lemma Follows_into_program [TC]: "F \ Follows(A, r, f, g) ==> F \ program" by (blast dest: Follows_type [THEN subsetD]) lemma FollowsD: "F \ Follows(A, r, f, g)==> F \ program & (\a. a \ A) & (\x \ state. f(x):A & g(x):A)" apply (unfold Follows_def) apply (blast dest: IncreasingD) done lemma Follows_constantI: "[| F \ program; c \ A; refl(A, r) |] ==> F \ Follows(A, r, %x. c, %x. c)" apply (unfold Follows_def, auto) apply (auto simp add: refl_def) done lemma subset_Follows_comp: "[| mono1(A, r, B, s, h); refl(A, r); trans[B](s) |] ==> Follows(A, r, f, g) \ Follows(B, s, h comp f, h comp g)" apply (unfold Follows_def, clarify) apply (frule_tac f = g in IncreasingD) apply (frule_tac f = f in IncreasingD) apply (rule IntI) apply (rule_tac [2] h = h in imp_LeadsTo_comp) prefer 5 apply assumption apply (auto intro: imp_Increasing_comp imp_Always_comp simp del: INT_simps) done lemma imp_Follows_comp: "[| F \ Follows(A, r, f, g); mono1(A, r, B, s, h); refl(A, r); trans[B](s) |] ==> F \ Follows(B, s, h comp f, h comp g)" apply (blast intro: subset_Follows_comp [THEN subsetD]) done (* 2-place monotone operation \ this general result is used to prove Follows_Un, Follows_munion *) (* 2-place monotone operation \ this general result is used to prove Follows_Un, Follows_munion *) lemma imp_Follows_comp2: "[| F \ Follows(A, r, f1, f); F \ Follows(B, s, g1, g); mono2(A, r, B, s, C, t, h); refl(A,r); refl(B, s); trans[C](t) |] ==> F \ Follows(C, t, %x. h(f1(x), g1(x)), %x. h(f(x), g(x)))" apply (unfold Follows_def, clarify) apply (frule_tac f = g in IncreasingD) apply (frule_tac f = f in IncreasingD) apply (rule IntI, safe) apply (rule_tac [3] h = h in imp_Always_comp2) prefer 5 apply assumption apply (rule_tac [2] h = h in imp_Increasing_comp2) prefer 4 apply assumption apply (rule_tac h = h in imp_Increasing_comp2) prefer 3 apply assumption apply simp_all apply (blast dest!: IncreasingD) apply (rule_tac h = h in imp_LeadsTo_comp2) prefer 4 apply assumption apply auto prefer 3 apply (simp add: mono2_def) apply (blast dest: IncreasingD)+ done lemma Follows_trans: "[| F \ Follows(A, r, f, g); F \ Follows(A,r, g, h); trans[A](r) |] ==> F \ Follows(A, r, f, h)" apply (frule_tac f = f in FollowsD) apply (frule_tac f = g in FollowsD) apply (simp add: Follows_def) apply (simp add: Always_eq_includes_reachable INT_iff, auto) apply (rule_tac [2] B = "{s \ state. \ r}" in LeadsTo_Trans) apply (rule_tac b = "g (x) " in trans_onD) apply blast+ done (** Destruction rules for Follows **) lemma Follows_imp_Increasing_left: "F \ Follows(A, r, f,g) ==> F \ Increasing(A, r, f)" by (unfold Follows_def, blast) lemma Follows_imp_Increasing_right: "F \ Follows(A, r, f,g) ==> F \ Increasing(A, r, g)" by (unfold Follows_def, blast) lemma Follows_imp_Always: "F :Follows(A, r, f, g) ==> F \ Always({s \ state. \ r})" by (unfold Follows_def, blast) lemma Follows_imp_LeadsTo: "[| F \ Follows(A, r, f, g); k \ A |] ==> F: {s \ state. \ r } \w {s \ state. \ r}" by (unfold Follows_def, blast) lemma Follows_LeadsTo_pfixLe: "[| F \ Follows(list(nat), gen_prefix(nat, Le), f, g); k \ list(nat) |] ==> F \ {s \ state. k pfixLe g(s)} \w {s \ state. k pfixLe f(s)}" by (blast intro: Follows_imp_LeadsTo) lemma Follows_LeadsTo_pfixGe: "[| F \ Follows(list(nat), gen_prefix(nat, Ge), f, g); k \ list(nat) |] ==> F \ {s \ state. k pfixGe g(s)} \w {s \ state. k pfixGe f(s)}" by (blast intro: Follows_imp_LeadsTo) lemma Always_Follows1: "[| F \ Always({s \ state. f(s) = g(s)}); F \ Follows(A, r, f, h); \x \ state. g(x):A |] ==> F \ Follows(A, r, g, h)" apply (unfold Follows_def Increasing_def Stable_def) apply (simp add: INT_iff, auto) apply (rule_tac [3] C = "{s \ state. f(s)=g(s)}" and A = "{s \ state. \ r}" and A' = "{s \ state. \ r}" in Always_LeadsTo_weaken) apply (erule_tac A = "{s \ state. \ r}" and A' = "{s \ state. \ r}" in Always_Constrains_weaken) apply auto apply (drule Always_Int_I, assumption) apply (erule_tac A = "{s \ state. f(s)=g(s)} \ {s \ state. \ r}" in Always_weaken) apply auto done lemma Always_Follows2: "[| F \ Always({s \ state. g(s) = h(s)}); F \ Follows(A, r, f, g); \x \ state. h(x):A |] ==> F \ Follows(A, r, f, h)" apply (unfold Follows_def Increasing_def Stable_def) apply (simp add: INT_iff, auto) apply (rule_tac [3] C = "{s \ state. g (s) =h (s) }" and A = "{s \ state. \ r}" and A' = "{s \ state. \ r}" in Always_LeadsTo_weaken) apply (erule_tac A = "{s \ state. \ r}" and A' = "{s \ state. \ r}" in Always_Constrains_weaken) apply auto apply (drule Always_Int_I, assumption) apply (erule_tac A = "{s \ state. g(s)=h(s)} \ {s \ state. \ r}" in Always_weaken) apply auto done (** Union properties (with the subset ordering) **) lemma refl_SetLe [simp]: "refl(Pow(A), SetLe(A))" by (unfold refl_def SetLe_def, auto) lemma trans_on_SetLe [simp]: "trans[Pow(A)](SetLe(A))" by (unfold trans_on_def SetLe_def, auto) lemma antisym_SetLe [simp]: "antisym(SetLe(A))" by (unfold antisym_def SetLe_def, auto) lemma part_order_SetLe [simp]: "part_order(Pow(A), SetLe(A))" by (unfold part_order_def, auto) lemma increasing_Un: "[| F \ Increasing.increasing(Pow(A), SetLe(A), f); F \ Increasing.increasing(Pow(A), SetLe(A), g) |] ==> F \ Increasing.increasing(Pow(A), SetLe(A), %x. f(x) \ g(x))" by (rule_tac h = "(Un)" in imp_increasing_comp2, auto) lemma Increasing_Un: "[| F \ Increasing(Pow(A), SetLe(A), f); F \ Increasing(Pow(A), SetLe(A), g) |] ==> F \ Increasing(Pow(A), SetLe(A), %x. f(x) \ g(x))" by (rule_tac h = "(Un)" in imp_Increasing_comp2, auto) lemma Always_Un: "[| F \ Always({s \ state. f1(s) \ f(s)}); F \ Always({s \ state. g1(s) \ g(s)}) |] ==> F \ Always({s \ state. f1(s) \ g1(s) \ f(s) \ g(s)})" by (simp add: Always_eq_includes_reachable, blast) lemma Follows_Un: "[| F \ Follows(Pow(A), SetLe(A), f1, f); F \ Follows(Pow(A), SetLe(A), g1, g) |] ==> F \ Follows(Pow(A), SetLe(A), %s. f1(s) \ g1(s), %s. f(s) \ g(s))" by (rule_tac h = "(Un)" in imp_Follows_comp2, auto) (** Multiset union properties (with the MultLe ordering) **) lemma refl_MultLe [simp]: "refl(Mult(A), MultLe(A,r))" by (unfold MultLe_def refl_def, auto) lemma MultLe_refl1 [simp]: "[| multiset(M); mset_of(M)<=A |] ==> \ MultLe(A, r)" apply (unfold MultLe_def id_def lam_def) apply (auto simp add: Mult_iff_multiset) done lemma MultLe_refl2 [simp]: "M \ Mult(A) ==> \ MultLe(A, r)" by (unfold MultLe_def id_def lam_def, auto) lemma trans_on_MultLe [simp]: "trans[Mult(A)](MultLe(A,r))" apply (unfold MultLe_def trans_on_def) apply (auto intro: trancl_trans simp add: multirel_def) done lemma MultLe_type: "MultLe(A, r)<= (Mult(A) * Mult(A))" apply (unfold MultLe_def, auto) apply (drule multirel_type [THEN subsetD], auto) done lemma MultLe_trans: "[| \ MultLe(A,r); \ MultLe(A,r) |] ==> \ MultLe(A,r)" apply (cut_tac A=A in trans_on_MultLe) apply (drule trans_onD, assumption) apply (auto dest: MultLe_type [THEN subsetD]) done lemma part_order_imp_part_ord: "part_order(A, r) ==> part_ord(A, r-id(A))" apply (unfold part_order_def part_ord_def) apply (simp add: refl_def id_def lam_def irrefl_def, auto) apply (simp (no_asm) add: trans_on_def) apply auto apply (blast dest: trans_onD) apply (simp (no_asm_use) add: antisym_def) apply auto done lemma antisym_MultLe [simp]: "part_order(A, r) ==> antisym(MultLe(A,r))" apply (unfold MultLe_def antisym_def) apply (drule part_order_imp_part_ord, auto) apply (drule irrefl_on_multirel) apply (frule multirel_type [THEN subsetD]) apply (drule multirel_trans) apply (auto simp add: irrefl_def) done lemma part_order_MultLe [simp]: "part_order(A, r) ==> part_order(Mult(A), MultLe(A, r))" apply (frule antisym_MultLe) apply (auto simp add: part_order_def) done lemma empty_le_MultLe [simp]: "[| multiset(M); mset_of(M)<= A|] ==> <0, M> \ MultLe(A, r)" apply (unfold MultLe_def) apply (case_tac "M=0") apply (auto simp add: FiniteFun.intros) apply (subgoal_tac "<0 +# 0, 0 +# M> \ multirel (A, r - id (A))") apply (rule_tac [2] one_step_implies_multirel) apply (auto simp add: Mult_iff_multiset) done lemma empty_le_MultLe2 [simp]: "M \ Mult(A) ==> <0, M> \ MultLe(A, r)" by (simp add: Mult_iff_multiset) lemma munion_mono: "[| \ MultLe(A, r); \ MultLe(A, r) |] ==> \ MultLe(A, r)" apply (unfold MultLe_def) apply (auto intro: munion_multirel_mono1 munion_multirel_mono2 munion_multirel_mono multiset_into_Mult simp add: Mult_iff_multiset) done lemma increasing_munion: "[| F \ Increasing.increasing(Mult(A), MultLe(A,r), f); F \ Increasing.increasing(Mult(A), MultLe(A,r), g) |] ==> F \ Increasing.increasing(Mult(A),MultLe(A,r), %x. f(x) +# g(x))" by (rule_tac h = munion in imp_increasing_comp2, auto) lemma Increasing_munion: "[| F \ Increasing(Mult(A), MultLe(A,r), f); F \ Increasing(Mult(A), MultLe(A,r), g)|] ==> F \ Increasing(Mult(A),MultLe(A,r), %x. f(x) +# g(x))" by (rule_tac h = munion in imp_Increasing_comp2, auto) lemma Always_munion: "[| F \ Always({s \ state. \ MultLe(A,r)}); F \ Always({s \ state. \ MultLe(A,r)}); \x \ state. f1(x):Mult(A)&f(x):Mult(A) & g1(x):Mult(A) & g(x):Mult(A)|] ==> F \ Always({s \ state. \ MultLe(A,r)})" apply (rule_tac h = munion in imp_Always_comp2, simp_all) apply (blast intro: munion_mono, simp_all) done lemma Follows_munion: "[| F \ Follows(Mult(A), MultLe(A, r), f1, f); F \ Follows(Mult(A), MultLe(A, r), g1, g) |] ==> F \ Follows(Mult(A), MultLe(A, r), %s. f1(s) +# g1(s), %s. f(s) +# g(s))" by (rule_tac h = munion in imp_Follows_comp2, auto) (** Used in ClientImp **) lemma Follows_msetsum_UN: "!!f. [| \i \ I. F \ Follows(Mult(A), MultLe(A, r), f'(i), f(i)); \s. \i \ I. multiset(f'(i, s)) & mset_of(f'(i, s))<=A & multiset(f(i, s)) & mset_of(f(i, s))<=A ; Finite(I); F \ program |] ==> F \ Follows(Mult(A), MultLe(A, r), %x. msetsum(%i. f'(i, x), I, A), %x. msetsum(%i. f(i, x), I, A))" apply (erule rev_mp) apply (drule Finite_into_Fin) apply (erule Fin_induct) apply (simp (no_asm_simp)) apply (rule Follows_constantI) apply (simp_all (no_asm_simp) add: FiniteFun.intros) apply auto apply (rule Follows_munion, auto) done end