(* Title: ZF/UNITY/Comp.thy Author: Sidi O Ehmety, Computer Laboratory Copyright 1998 University of Cambridge From Chandy and Sanders, "Reasoning About Program Composition", Technical Report 2000-003, University of Florida, 2000. Revised by Sidi Ehmety on January 2001 Added: a strong form of the order relation over component and localize Theory ported from HOL. *) section\Composition\ theory Comp imports Union Increasing begin definition component :: "[i,i]=>o" (infixl "component" 65) where "F component H == (\G. F \ G = H)" definition strict_component :: "[i,i]=>o" (infixl "strict'_component" 65) where "F strict_component H == F component H & F\H" definition (* A stronger form of the component relation *) component_of :: "[i,i]=>o" (infixl "component'_of" 65) where "F component_of H == (\G. F ok G & F \ G = H)" definition strict_component_of :: "[i,i]=>o" (infixl "strict'_component'_of" 65) where "F strict_component_of H == F component_of H & F\H" definition (* Preserves a state function f, in particular a variable *) preserves :: "(i=>i)=>i" where "preserves(f) == {F:program. \z. F: stable({s:state. f(s) = z})}" definition fun_pair :: "[i=>i, i =>i] =>(i=>i)" where "fun_pair(f, g) == %x. " definition localize :: "[i=>i, i] => i" where "localize(f,F) == mk_program(Init(F), Acts(F), AllowedActs(F) \ (\G\preserves(f). Acts(G)))" (*** component and strict_component relations ***) lemma componentI: "H component F | H component G ==> H component (F \ G)" apply (unfold component_def, auto) apply (rule_tac x = "Ga \ G" in exI) apply (rule_tac [2] x = "G \ F" in exI) apply (auto simp add: Join_ac) done lemma component_eq_subset: "G \ program ==> (F component G) \ (Init(G) \ Init(F) & Acts(F) \ Acts(G) & AllowedActs(G) \ AllowedActs(F))" apply (unfold component_def, auto) apply (rule exI) apply (rule program_equalityI, auto) done lemma component_SKIP [simp]: "F \ program ==> SKIP component F" apply (unfold component_def) apply (rule_tac x = F in exI) apply (force intro: Join_SKIP_left) done lemma component_refl [simp]: "F \ program ==> F component F" apply (unfold component_def) apply (rule_tac x = F in exI) apply (force intro: Join_SKIP_right) done lemma SKIP_minimal: "F component SKIP ==> programify(F) = SKIP" apply (rule program_equalityI) apply (simp_all add: component_eq_subset, blast) done lemma component_Join1: "F component (F \ G)" by (unfold component_def, blast) lemma component_Join2: "G component (F \ G)" apply (unfold component_def) apply (simp (no_asm) add: Join_commute) apply blast done lemma Join_absorb1: "F component G ==> F \ G = G" by (auto simp add: component_def Join_left_absorb) lemma Join_absorb2: "G component F ==> F \ G = F" by (auto simp add: Join_ac component_def) lemma JOIN_component_iff: "H \ program==>(JOIN(I,F) component H) \ (\i \ I. F(i) component H)" apply (case_tac "I=0", force) apply (simp (no_asm_simp) add: component_eq_subset) apply auto apply blast apply (rename_tac "y") apply (drule_tac c = y and A = "AllowedActs (H)" in subsetD) apply (blast elim!: not_emptyE)+ done lemma component_JOIN: "i \ I ==> F(i) component (\i \ I. (F(i)))" apply (unfold component_def) apply (blast intro: JOIN_absorb) done lemma component_trans: "[| F component G; G component H |] ==> F component H" apply (unfold component_def) apply (blast intro: Join_assoc [symmetric]) done lemma component_antisym: "[| F \ program; G \ program |] ==>(F component G & G component F) \ F = G" apply (simp (no_asm_simp) add: component_eq_subset) apply clarify apply (rule program_equalityI, auto) done lemma Join_component_iff: "H \ program ==> ((F \ G) component H) \ (F component H & G component H)" apply (simp (no_asm_simp) add: component_eq_subset) apply blast done lemma component_constrains: "[| F component G; G \ A co B; F \ program |] ==> F \ A co B" apply (frule constrainsD2) apply (auto simp add: constrains_def component_eq_subset) done (*** preserves ***) lemma preserves_is_safety_prop [simp]: "safety_prop(preserves(f))" apply (unfold preserves_def safety_prop_def) apply (auto dest: ActsD simp add: stable_def constrains_def) apply (drule_tac c = act in subsetD, auto) done lemma preservesI [rule_format]: "\z. F \ stable({s \ state. f(s) = z}) ==> F \ preserves(f)" apply (auto simp add: preserves_def) apply (blast dest: stableD2) done lemma preserves_imp_eq: "[| F \ preserves(f); act \ Acts(F); \ act |] ==> f(s) = f(t)" apply (unfold preserves_def stable_def constrains_def) apply (subgoal_tac "s \ state & t \ state") prefer 2 apply (blast dest!: Acts_type [THEN subsetD], force) done lemma Join_preserves [iff]: "(F \ G \ preserves(v)) \ (programify(F) \ preserves(v) & programify(G) \ preserves(v))" by (auto simp add: preserves_def INT_iff) lemma JOIN_preserves [iff]: "(JOIN(I,F): preserves(v)) \ (\i \ I. programify(F(i)):preserves(v))" by (auto simp add: JOIN_stable preserves_def INT_iff) lemma SKIP_preserves [iff]: "SKIP \ preserves(v)" by (auto simp add: preserves_def INT_iff) lemma fun_pair_apply [simp]: "fun_pair(f,g,x) = " apply (unfold fun_pair_def) apply (simp (no_asm)) done lemma preserves_fun_pair: "preserves(fun_pair(v,w)) = preserves(v) \ preserves(w)" apply (rule equalityI) apply (auto simp add: preserves_def stable_def constrains_def, blast+) done lemma preserves_fun_pair_iff [iff]: "F \ preserves(fun_pair(v, w)) \ F \ preserves(v) \ preserves(w)" by (simp add: preserves_fun_pair) lemma fun_pair_comp_distrib: "(fun_pair(f, g) comp h)(x) = fun_pair(f comp h, g comp h, x)" by (simp add: fun_pair_def metacomp_def) lemma comp_apply [simp]: "(f comp g)(x) = f(g(x))" by (simp add: metacomp_def) lemma preserves_type: "preserves(v)<=program" by (unfold preserves_def, auto) lemma preserves_into_program [TC]: "F \ preserves(f) ==> F \ program" by (blast intro: preserves_type [THEN subsetD]) lemma subset_preserves_comp: "preserves(f) \ preserves(g comp f)" apply (auto simp add: preserves_def stable_def constrains_def) apply (drule_tac x = "f (xb)" in spec) apply (drule_tac x = act in bspec, auto) done lemma imp_preserves_comp: "F \ preserves(f) ==> F \ preserves(g comp f)" by (blast intro: subset_preserves_comp [THEN subsetD]) lemma preserves_subset_stable: "preserves(f) \ stable({s \ state. P(f(s))})" apply (auto simp add: preserves_def stable_def constrains_def) apply (rename_tac s' s) apply (subgoal_tac "f (s) = f (s') ") apply (force+) done lemma preserves_imp_stable: "F \ preserves(f) ==> F \ stable({s \ state. P(f(s))})" by (blast intro: preserves_subset_stable [THEN subsetD]) lemma preserves_imp_increasing: "[| F \ preserves(f); \x \ state. f(x):A |] ==> F \ Increasing.increasing(A, r, f)" apply (unfold Increasing.increasing_def) apply (auto intro: preserves_into_program) apply (rule_tac P = "%x. :r" in preserves_imp_stable, auto) done lemma preserves_id_subset_stable: "st_set(A) ==> preserves(%x. x) \ stable(A)" apply (unfold preserves_def stable_def constrains_def, auto) apply (drule_tac x = xb in spec) apply (drule_tac x = act in bspec) apply (auto dest: ActsD) done lemma preserves_id_imp_stable: "[| F \ preserves(%x. x); st_set(A) |] ==> F \ stable(A)" by (blast intro: preserves_id_subset_stable [THEN subsetD]) (** Added by Sidi **) (** component_of **) (* component_of is stronger than component *) lemma component_of_imp_component: "F component_of H ==> F component H" apply (unfold component_def component_of_def, blast) done (* component_of satisfies many of component's properties *) lemma component_of_refl [simp]: "F \ program ==> F component_of F" apply (unfold component_of_def) apply (rule_tac x = SKIP in exI, auto) done lemma component_of_SKIP [simp]: "F \ program ==>SKIP component_of F" apply (unfold component_of_def, auto) apply (rule_tac x = F in exI, auto) done lemma component_of_trans: "[| F component_of G; G component_of H |] ==> F component_of H" apply (unfold component_of_def) apply (blast intro: Join_assoc [symmetric]) done (** localize **) lemma localize_Init_eq [simp]: "Init(localize(v,F)) = Init(F)" by (unfold localize_def, simp) lemma localize_Acts_eq [simp]: "Acts(localize(v,F)) = Acts(F)" by (unfold localize_def, simp) lemma localize_AllowedActs_eq [simp]: "AllowedActs(localize(v,F)) = AllowedActs(F) \ (\G \ preserves(v). Acts(G))" apply (unfold localize_def) apply (rule equalityI) apply (auto dest: Acts_type [THEN subsetD]) done (** Theorems used in ClientImpl **) lemma stable_localTo_stable2: "[| F \ stable({s \ state. P(f(s), g(s))}); G \ preserves(f); G \ preserves(g) |] ==> F \ G \ stable({s \ state. P(f(s), g(s))})" apply (auto dest: ActsD preserves_into_program simp add: stable_def constrains_def) apply (case_tac "act \ Acts (F) ") apply auto apply (drule preserves_imp_eq) apply (drule_tac [3] preserves_imp_eq, auto) done lemma Increasing_preserves_Stable: "[| F \ stable({s \ state. :r}); G \ preserves(f); F \ G \ Increasing(A, r, g); \x \ state. f(x):A & g(x):A |] ==> F \ G \ Stable({s \ state. :r})" apply (auto simp add: stable_def Stable_def Increasing_def Constrains_def all_conj_distrib) apply (simp_all add: constrains_type [THEN subsetD] preserves_type [THEN subsetD]) apply (blast intro: constrains_weaken) (*The G case remains*) apply (auto dest: ActsD simp add: preserves_def stable_def constrains_def ball_conj_distrib all_conj_distrib) (*We have a G-action, so delete assumptions about F-actions*) apply (erule_tac V = "\act \ Acts (F). P (act)" for P in thin_rl) apply (erule_tac V = "\k\A. \act \ Acts (F) . P (k,act)" for P in thin_rl) apply (subgoal_tac "f (x) = f (xa) ") apply (auto dest!: bspec) done (** Lemma used in AllocImpl **) lemma Constrains_UN_left: "[| \x \ I. F \ A(x) Co B; F \ program |] ==> F:(\x \ I. A(x)) Co B" by (unfold Constrains_def constrains_def, auto) lemma stable_Join_Stable: "[| F \ stable({s \ state. P(f(s), g(s))}); \k \ A. F \ G \ Stable({s \ state. P(k, g(s))}); G \ preserves(f); \s \ state. f(s):A|] ==> F \ G \ Stable({s \ state. P(f(s), g(s))})" apply (unfold stable_def Stable_def preserves_def) apply (rule_tac A = "(\k \ A. {s \ state. f(s)=k} \ {s \ state. P (f (s), g (s))})" in Constrains_weaken_L) prefer 2 apply blast apply (rule Constrains_UN_left, auto) apply (rule_tac A = "{s \ state. f(s)=k} \ {s \ state. P (f (s), g (s))} \ {s \ state. P (k, g (s))}" and A' = "({s \ state. f(s)=k} \ {s \ state. P (f (s), g (s))}) \ {s \ state. P (k, g (s))}" in Constrains_weaken) prefer 2 apply blast prefer 2 apply blast apply (rule Constrains_Int) apply (rule constrains_imp_Constrains) apply (auto simp add: constrains_type [THEN subsetD]) apply (blast intro: constrains_weaken) apply (drule_tac x = k in spec) apply (blast intro: constrains_weaken) done end