(* Title: ZF/Trancl.thy Author: Lawrence C Paulson, Cambridge University Computer Laboratory Copyright 1992 University of Cambridge *) section\Relations: Their General Properties and Transitive Closure\ theory Trancl imports Fixedpt Perm begin definition refl :: "[i,i]=>o" where "refl(A,r) == (\x\A. \ r)" definition irrefl :: "[i,i]=>o" where "irrefl(A,r) == \x\A. \ r" definition sym :: "i=>o" where "sym(r) == \x y. : r \ : r" definition asym :: "i=>o" where "asym(r) == \x y. :r \ ~ :r" definition antisym :: "i=>o" where "antisym(r) == \x y.:r \ :r \ x=y" definition trans :: "i=>o" where "trans(r) == \x y z. : r \ : r \ : r" definition trans_on :: "[i,i]=>o" ("trans[_]'(_')") where "trans[A](r) == \x\A. \y\A. \z\A. : r \ : r \ : r" definition rtrancl :: "i=>i" ("(_^*)" [100] 100) (*refl/transitive closure*) where "r^* == lfp(field(r)*field(r), %s. id(field(r)) \ (r O s))" definition trancl :: "i=>i" ("(_^+)" [100] 100) (*transitive closure*) where "r^+ == r O r^*" definition equiv :: "[i,i]=>o" where "equiv(A,r) == r \ A*A & refl(A,r) & sym(r) & trans(r)" subsection\General properties of relations\ subsubsection\irreflexivity\ lemma irreflI: "[| !!x. x \ A ==> \ r |] ==> irrefl(A,r)" by (simp add: irrefl_def) lemma irreflE: "[| irrefl(A,r); x \ A |] ==> \ r" by (simp add: irrefl_def) subsubsection\symmetry\ lemma symI: "[| !!x y.: r ==> : r |] ==> sym(r)" by (unfold sym_def, blast) lemma symE: "[| sym(r); : r |] ==> : r" by (unfold sym_def, blast) subsubsection\antisymmetry\ lemma antisymI: "[| !!x y.[| : r; : r |] ==> x=y |] ==> antisym(r)" by (simp add: antisym_def, blast) lemma antisymE: "[| antisym(r); : r; : r |] ==> x=y" by (simp add: antisym_def, blast) subsubsection\transitivity\ lemma transD: "[| trans(r); :r; :r |] ==> :r" by (unfold trans_def, blast) lemma trans_onD: "[| trans[A](r); :r; :r; a \ A; b \ A; c \ A |] ==> :r" by (unfold trans_on_def, blast) lemma trans_imp_trans_on: "trans(r) ==> trans[A](r)" by (unfold trans_def trans_on_def, blast) lemma trans_on_imp_trans: "[|trans[A](r); r \ A*A|] ==> trans(r)" by (simp add: trans_on_def trans_def, blast) subsection\Transitive closure of a relation\ lemma rtrancl_bnd_mono: "bnd_mono(field(r)*field(r), %s. id(field(r)) \ (r O s))" by (rule bnd_monoI, blast+) lemma rtrancl_mono: "r<=s ==> r^* \ s^*" apply (unfold rtrancl_def) apply (rule lfp_mono) apply (rule rtrancl_bnd_mono)+ apply blast done (* @{term"r^* = id(field(r)) \ ( r O r^* )"} *) lemmas rtrancl_unfold = rtrancl_bnd_mono [THEN rtrancl_def [THEN def_lfp_unfold]] (** The relation rtrancl **) (* @{term"r^* \ field(r) * field(r)"} *) lemmas rtrancl_type = rtrancl_def [THEN def_lfp_subset] lemma relation_rtrancl: "relation(r^*)" apply (simp add: relation_def) apply (blast dest: rtrancl_type [THEN subsetD]) done (*Reflexivity of rtrancl*) lemma rtrancl_refl: "[| a \ field(r) |] ==> \ r^*" apply (rule rtrancl_unfold [THEN ssubst]) apply (erule idI [THEN UnI1]) done (*Closure under composition with r *) lemma rtrancl_into_rtrancl: "[| \ r^*; \ r |] ==> \ r^*" apply (rule rtrancl_unfold [THEN ssubst]) apply (rule compI [THEN UnI2], assumption, assumption) done (*rtrancl of r contains all pairs in r *) lemma r_into_rtrancl: " \ r ==> \ r^*" by (rule rtrancl_refl [THEN rtrancl_into_rtrancl], blast+) (*The premise ensures that r consists entirely of pairs*) lemma r_subset_rtrancl: "relation(r) ==> r \ r^*" by (simp add: relation_def, blast intro: r_into_rtrancl) lemma rtrancl_field: "field(r^*) = field(r)" by (blast intro: r_into_rtrancl dest!: rtrancl_type [THEN subsetD]) (** standard induction rule **) lemma rtrancl_full_induct [case_names initial step, consumes 1]: "[| \ r^*; !!x. x \ field(r) ==> P(); !!x y z.[| P(); : r^*; : r |] ==> P() |] ==> P()" by (erule def_induct [OF rtrancl_def rtrancl_bnd_mono], blast) (*nice induction rule. Tried adding the typing hypotheses y,z \ field(r), but these caused expensive case splits!*) lemma rtrancl_induct [case_names initial step, induct set: rtrancl]: "[| \ r^*; P(a); !!y z.[| \ r^*; \ r; P(y) |] ==> P(z) |] ==> P(b)" (*by induction on this formula*) apply (subgoal_tac "\y. = \ P (y) ") (*now solve first subgoal: this formula is sufficient*) apply (erule spec [THEN mp], rule refl) (*now do the induction*) apply (erule rtrancl_full_induct, blast+) done (*transitivity of transitive closure!! -- by induction.*) lemma trans_rtrancl: "trans(r^*)" apply (unfold trans_def) apply (intro allI impI) apply (erule_tac b = z in rtrancl_induct, assumption) apply (blast intro: rtrancl_into_rtrancl) done lemmas rtrancl_trans = trans_rtrancl [THEN transD] (*elimination of rtrancl -- by induction on a special formula*) lemma rtranclE: "[| \ r^*; (a=b) ==> P; !!y.[| \ r^*; \ r |] ==> P |] ==> P" apply (subgoal_tac "a = b | (\y. \ r^* & \ r) ") (*see HOL/trancl*) apply blast apply (erule rtrancl_induct, blast+) done (**** The relation trancl ****) (*Transitivity of r^+ is proved by transitivity of r^* *) lemma trans_trancl: "trans(r^+)" apply (unfold trans_def trancl_def) apply (blast intro: rtrancl_into_rtrancl trans_rtrancl [THEN transD, THEN compI]) done lemmas trans_on_trancl = trans_trancl [THEN trans_imp_trans_on] lemmas trancl_trans = trans_trancl [THEN transD] (** Conversions between trancl and rtrancl **) lemma trancl_into_rtrancl: " \ r^+ ==> \ r^*" apply (unfold trancl_def) apply (blast intro: rtrancl_into_rtrancl) done (*r^+ contains all pairs in r *) lemma r_into_trancl: " \ r ==> \ r^+" apply (unfold trancl_def) apply (blast intro!: rtrancl_refl) done (*The premise ensures that r consists entirely of pairs*) lemma r_subset_trancl: "relation(r) ==> r \ r^+" by (simp add: relation_def, blast intro: r_into_trancl) (*intro rule by definition: from r^* and r *) lemma rtrancl_into_trancl1: "[| \ r^*; \ r |] ==> \ r^+" by (unfold trancl_def, blast) (*intro rule from r and r^* *) lemma rtrancl_into_trancl2: "[| \ r; \ r^* |] ==> \ r^+" apply (erule rtrancl_induct) apply (erule r_into_trancl) apply (blast intro: r_into_trancl trancl_trans) done (*Nice induction rule for trancl*) lemma trancl_induct [case_names initial step, induct set: trancl]: "[| \ r^+; !!y. [| \ r |] ==> P(y); !!y z.[| \ r^+; \ r; P(y) |] ==> P(z) |] ==> P(b)" apply (rule compEpair) apply (unfold trancl_def, assumption) (*by induction on this formula*) apply (subgoal_tac "\z. \ r \ P (z) ") (*now solve first subgoal: this formula is sufficient*) apply blast apply (erule rtrancl_induct) apply (blast intro: rtrancl_into_trancl1)+ done (*elimination of r^+ -- NOT an induction rule*) lemma tranclE: "[| \ r^+; \ r ==> P; !!y.[| \ r^+; \ r |] ==> P |] ==> P" apply (subgoal_tac " \ r | (\y. \ r^+ & \ r) ") apply blast apply (rule compEpair) apply (unfold trancl_def, assumption) apply (erule rtranclE) apply (blast intro: rtrancl_into_trancl1)+ done lemma trancl_type: "r^+ \ field(r)*field(r)" apply (unfold trancl_def) apply (blast elim: rtrancl_type [THEN subsetD, THEN SigmaE2]) done lemma relation_trancl: "relation(r^+)" apply (simp add: relation_def) apply (blast dest: trancl_type [THEN subsetD]) done lemma trancl_subset_times: "r \ A * A ==> r^+ \ A * A" by (insert trancl_type [of r], blast) lemma trancl_mono: "r<=s ==> r^+ \ s^+" by (unfold trancl_def, intro comp_mono rtrancl_mono) lemma trancl_eq_r: "[|relation(r); trans(r)|] ==> r^+ = r" apply (rule equalityI) prefer 2 apply (erule r_subset_trancl, clarify) apply (frule trancl_type [THEN subsetD], clarify) apply (erule trancl_induct, assumption) apply (blast dest: transD) done (** Suggested by Sidi Ould Ehmety **) lemma rtrancl_idemp [simp]: "(r^*)^* = r^*" apply (rule equalityI, auto) prefer 2 apply (frule rtrancl_type [THEN subsetD]) apply (blast intro: r_into_rtrancl ) txt\converse direction\ apply (frule rtrancl_type [THEN subsetD], clarify) apply (erule rtrancl_induct) apply (simp add: rtrancl_refl rtrancl_field) apply (blast intro: rtrancl_trans) done lemma rtrancl_subset: "[| R \ S; S \ R^* |] ==> S^* = R^*" apply (drule rtrancl_mono) apply (drule rtrancl_mono, simp_all, blast) done lemma rtrancl_Un_rtrancl: "[| relation(r); relation(s) |] ==> (r^* \ s^*)^* = (r \ s)^*" apply (rule rtrancl_subset) apply (blast dest: r_subset_rtrancl) apply (blast intro: rtrancl_mono [THEN subsetD]) done (*** "converse" laws by Sidi Ould Ehmety ***) (** rtrancl **) lemma rtrancl_converseD: ":converse(r)^* ==> :converse(r^*)" apply (rule converseI) apply (frule rtrancl_type [THEN subsetD]) apply (erule rtrancl_induct) apply (blast intro: rtrancl_refl) apply (blast intro: r_into_rtrancl rtrancl_trans) done lemma rtrancl_converseI: ":converse(r^*) ==> :converse(r)^*" apply (drule converseD) apply (frule rtrancl_type [THEN subsetD]) apply (erule rtrancl_induct) apply (blast intro: rtrancl_refl) apply (blast intro: r_into_rtrancl rtrancl_trans) done lemma rtrancl_converse: "converse(r)^* = converse(r^*)" apply (safe intro!: equalityI) apply (frule rtrancl_type [THEN subsetD]) apply (safe dest!: rtrancl_converseD intro!: rtrancl_converseI) done (** trancl **) lemma trancl_converseD: ":converse(r)^+ ==> :converse(r^+)" apply (erule trancl_induct) apply (auto intro: r_into_trancl trancl_trans) done lemma trancl_converseI: ":converse(r^+) ==> :converse(r)^+" apply (drule converseD) apply (erule trancl_induct) apply (auto intro: r_into_trancl trancl_trans) done lemma trancl_converse: "converse(r)^+ = converse(r^+)" apply (safe intro!: equalityI) apply (frule trancl_type [THEN subsetD]) apply (safe dest!: trancl_converseD intro!: trancl_converseI) done lemma converse_trancl_induct [case_names initial step, consumes 1]: "[| :r^+; !!y. :r ==> P(y); !!y z. [| \ r; \ r^+; P(z) |] ==> P(y) |] ==> P(a)" apply (drule converseI) apply (simp (no_asm_use) add: trancl_converse [symmetric]) apply (erule trancl_induct) apply (auto simp add: trancl_converse) done end