(* Title: Pure/Isar/local_defs.ML Author: Makarius Local definitions. *) signature LOCAL_DEFS = sig val cert_def: Proof.context -> (string -> Position.T list) -> term -> (string * typ) * term val abs_def: term -> (string * typ) * term val expand: cterm list -> thm -> thm val def_export: Assumption.export val define: ((binding * mixfix) * (Thm.binding * term)) list -> Proof.context -> (term * (string * thm)) list * Proof.context val fixed_abbrev: (binding * mixfix) * term -> Proof.context -> (term * term) * Proof.context val export: Proof.context -> Proof.context -> thm -> (thm list * thm list) * thm val export_cterm: Proof.context -> Proof.context -> cterm -> (thm list * thm list) * cterm val contract: Proof.context -> thm list -> cterm -> thm -> thm val print_rules: Proof.context -> unit val defn_add: attribute val defn_del: attribute val meta_rewrite_conv: Proof.context -> conv val meta_rewrite_rule: Proof.context -> thm -> thm val abs_def_rule: Proof.context -> thm -> thm val unfold_abs_def_raw: Config.raw val unfold_abs_def: bool Config.T val unfold: Proof.context -> thm list -> thm -> thm val unfold_goals: Proof.context -> thm list -> thm -> thm val unfold_tac: Proof.context -> thm list -> tactic val unfold0: Proof.context -> thm list -> thm -> thm val unfold0_goals: Proof.context -> thm list -> thm -> thm val unfold0_tac: Proof.context -> thm list -> tactic val fold: Proof.context -> thm list -> thm -> thm val fold_tac: Proof.context -> thm list -> tactic val derived_def: Proof.context -> (string -> Position.T list) -> {conditional: bool} -> term -> ((string * typ) * term) * (Proof.context -> thm -> thm) end; structure Local_Defs: LOCAL_DEFS = struct (** primitive definitions **) (* prepare defs *) fun cert_def ctxt get_pos eq = let fun err msg = cat_error msg ("The error(s) above occurred in definition:\n" ^ quote (Syntax.string_of_term ctxt eq)); val ((lhs, _), args, eq') = eq |> Sign.no_vars ctxt |> Primitive_Defs.dest_def ctxt {check_head = Term.is_Free, check_free_lhs = not o Variable.is_fixed ctxt, check_free_rhs = if Variable.is_body ctxt then K true else Variable.is_fixed ctxt, check_tfree = K true} handle TERM (msg, _) => err msg | ERROR msg => err msg; val _ = Context_Position.reports ctxt (maps (fn Free (x, _) => Syntax_Phases.reports_of_scope (get_pos x) | _ => []) args); in (Term.dest_Free (Term.head_of lhs), eq') end; val abs_def = Primitive_Defs.abs_def #>> Term.dest_Free; fun mk_def ctxt args = let val (bs, rhss) = split_list args; val Ts = map Term.fastype_of rhss; val (xs, _) = ctxt |> Context_Position.set_visible false |> Proof_Context.add_fixes (map2 (fn b => fn T => (b, SOME T, NoSyn)) bs Ts); val lhss = ListPair.map Free (xs, Ts); in map Logic.mk_equals (lhss ~~ rhss) end; (* export defs *) val head_of_def = Term.dest_Free o Term.head_of o #1 o Logic.dest_equals o Term.strip_all_body; (* [x, x \ a] : B x ----------- B a *) fun expand defs = Drule.implies_intr_list defs #> Drule.generalize ([], map (#1 o head_of_def o Thm.term_of) defs) #> funpow (length defs) (fn th => Drule.reflexive_thm RS th); val expand_term = Envir.expand_term_frees o map (abs_def o Thm.term_of); fun def_export _ defs = (expand defs, expand_term defs); (* define *) fun define defs ctxt = let val ((xs, mxs), specs) = defs |> split_list |>> split_list; val (bs, rhss) = specs |> split_list; val eqs = mk_def ctxt (xs ~~ rhss); val lhss = map (fst o Logic.dest_equals) eqs; in ctxt |> Proof_Context.add_fixes (map2 (fn x => fn mx => (x, NONE, mx)) xs mxs) |> #2 |> fold Variable.declare_term eqs |> Proof_Context.add_assms def_export (map2 (fn b => fn eq => (b, [(eq, [])])) bs eqs) |>> map2 (fn lhs => fn (name, [th]) => (lhs, (name, th))) lhss end; (* fixed_abbrev *) fun fixed_abbrev ((x, mx), rhs) ctxt = let val T = Term.fastype_of rhs; val ([x'], ctxt') = ctxt |> Variable.declare_term rhs |> Proof_Context.add_fixes [(x, SOME T, mx)]; val lhs = Free (x', T); val _ = cert_def ctxt' (K []) (Logic.mk_equals (lhs, rhs)); fun abbrev_export _ _ = (I, Envir.expand_term_frees [((x', T), rhs)]); val (_, ctxt'') = Assumption.add_assms abbrev_export [] ctxt'; in ((lhs, rhs), ctxt'') end; (* specific export -- result based on educated guessing *) (* [xs, xs \ as] : B xs -------------- B as *) fun export inner outer th = let val defs_asms = Assumption.local_assms_of inner outer |> filter_out (Drule.is_sort_constraint o Thm.term_of) |> map (Thm.assume #> (fn asm => (case try (head_of_def o Thm.prop_of) asm of NONE => (asm, false) | SOME x => let val t = Free x in (case try (Assumption.export_term inner outer) t of NONE => (asm, false) | SOME u => if t aconv u then (asm, false) else (Drule.abs_def (Variable.gen_all outer asm), true)) end))); in (apply2 (map #1) (List.partition #2 defs_asms), Assumption.export false inner outer th) end; (* [xs, xs \ as] : TERM b xs -------------- and -------------- TERM b as b xs \ b as *) fun export_cterm inner outer ct = export inner outer (Drule.mk_term ct) ||> Drule.dest_term; fun contract ctxt defs ct th = th COMP (Raw_Simplifier.rewrite ctxt true defs ct COMP_INCR Drule.equal_elim_rule2); (** defived definitions **) (* transformation via rewrite rules *) structure Rules = Generic_Data ( type T = thm list; val empty = []; val extend = I; val merge = Thm.merge_thms; ); fun print_rules ctxt = Pretty.writeln (Pretty.big_list "definitional rewrite rules:" (map (Thm.pretty_thm_item ctxt) (Rules.get (Context.Proof ctxt)))); val defn_add = Thm.declaration_attribute (Rules.map o Thm.add_thm o Thm.trim_context); val defn_del = Thm.declaration_attribute (Rules.map o Thm.del_thm); (* meta rewrite rules *) fun meta_rewrite_conv ctxt = Raw_Simplifier.rewrite_cterm (false, false, false) (K (K NONE)) (ctxt |> Raw_Simplifier.init_simpset (Rules.get (Context.Proof ctxt)) |> Raw_Simplifier.add_eqcong Drule.equals_cong); (*protect meta-level equality*) val meta_rewrite_rule = Conv.fconv_rule o meta_rewrite_conv; fun abs_def_rule ctxt = meta_rewrite_rule ctxt #> Drule.abs_def; (* unfold object-level rules *) val unfold_abs_def_raw = Config.declare ("unfold_abs_def", \<^here>) (K (Config.Bool true)); val unfold_abs_def = Config.bool unfold_abs_def_raw; local fun gen_unfold rewrite ctxt rews = let val meta_rews = map (meta_rewrite_rule ctxt) rews in if Config.get ctxt unfold_abs_def then rewrite ctxt meta_rews #> rewrite ctxt (map (perhaps (try Drule.abs_def)) meta_rews) else rewrite ctxt meta_rews end; val no_unfold_abs_def = Config.put unfold_abs_def false; in val unfold = gen_unfold Raw_Simplifier.rewrite_rule; val unfold_goals = gen_unfold Raw_Simplifier.rewrite_goals_rule; val unfold_tac = PRIMITIVE oo unfold_goals; val unfold0 = unfold o no_unfold_abs_def; val unfold0_goals = unfold_goals o no_unfold_abs_def; val unfold0_tac = unfold_tac o no_unfold_abs_def; end (* fold object-level rules *) fun fold ctxt rews = Raw_Simplifier.fold_rule ctxt (map (meta_rewrite_rule ctxt) rews); fun fold_tac ctxt rews = Raw_Simplifier.fold_goals_tac ctxt (map (meta_rewrite_rule ctxt) rews); (* derived defs -- potentially within the object-logic *) fun derived_def ctxt get_pos {conditional} prop = let val ((c, T), rhs) = prop |> Thm.cterm_of ctxt |> meta_rewrite_conv ctxt |> (snd o Logic.dest_equals o Thm.prop_of) |> conditional ? Logic.strip_imp_concl |> (abs_def o #2 o cert_def ctxt get_pos); fun prove ctxt' def = Goal.prove ctxt' ((not (Variable.is_body ctxt') ? Variable.add_free_names ctxt' prop) []) [] prop (fn {context = ctxt'', ...} => ALLGOALS (CONVERSION (meta_rewrite_conv ctxt'') THEN' rewrite_goal_tac ctxt'' [def] THEN' resolve_tac ctxt'' [Drule.reflexive_thm])) handle ERROR msg => cat_error msg "Failed to prove definitional specification"; in (((c, T), rhs), prove) end; end;