(* Title: HOL/UNITY/Simple/Channel.thy Author: Lawrence C Paulson, Cambridge University Computer Laboratory Copyright 1998 University of Cambridge Unordered Channel From Misra, "A Logic for Concurrent Programming" (1994), section 13.3 *) theory Channel imports "../UNITY_Main" begin type_synonym state = "nat set" consts F :: "state program" definition minSet :: "nat set => nat option" where "minSet A == if A={} then None else Some (LEAST x. x \ A)" axiomatization where UC1: "F \ (minSet -` {Some x}) co (minSet -` (Some`atLeast x))" and (* UC1 "F \ {s. minSet s = x} co {s. x \ minSet s}" *) UC2: "F \ (minSet -` {Some x}) leadsTo {s. x \ s}" (*None represents "infinity" while Some represents proper integers*) lemma minSet_eq_SomeD: "minSet A = Some x ==> x \ A" apply (unfold minSet_def) apply (simp split: if_split_asm) apply (fast intro: LeastI) done lemma minSet_empty [simp]: " minSet{} = None" by (unfold minSet_def, simp) lemma minSet_nonempty: "x \ A ==> minSet A = Some (LEAST x. x \ A)" by (unfold minSet_def, auto) lemma minSet_greaterThan: "F \ (minSet -` {Some x}) leadsTo (minSet -` (Some`greaterThan x))" apply (rule leadsTo_weaken) apply (rule_tac x1=x in psp [OF UC2 UC1], safe) apply (auto dest: minSet_eq_SomeD simp add: linorder_neq_iff) done (*The induction*) lemma Channel_progress_lemma: "F \ (UNIV-{{}}) leadsTo (minSet -` (Some`atLeast y))" apply (rule leadsTo_weaken_R) apply (rule_tac l = y and f = "the o minSet" and B = "{}" in greaterThan_bounded_induct, safe) apply (simp_all (no_asm_simp)) apply (drule_tac [2] minSet_nonempty) prefer 2 apply simp apply (rule minSet_greaterThan [THEN leadsTo_weaken], safe) apply simp_all apply (drule minSet_nonempty, simp) done lemma Channel_progress: "!!y::nat. F \ (UNIV-{{}}) leadsTo {s. y \ s}" apply (rule Channel_progress_lemma [THEN leadsTo_weaken_R], clarify) apply (frule minSet_nonempty) apply (auto dest: Suc_le_lessD not_less_Least) done end