(* Title: HOL/UNITY/Lift_prog.thy Author: Lawrence C Paulson, Cambridge University Computer Laboratory Copyright 1999 University of Cambridge lift_prog, etc: replication of components and arrays of processes. *) section\Replication of Components\ theory Lift_prog imports Rename begin definition insert_map :: "[nat, 'b, nat=>'b] => (nat=>'b)" where "insert_map i z f k == if k'b] => (nat=>'b)" where "delete_map i g k == if k'b) * 'c)] => (nat=>'b) * 'c" where "lift_map i == %(s,(f,uu)). (insert_map i s f, uu)" definition drop_map :: "[nat, (nat=>'b) * 'c] => 'b * ((nat=>'b) * 'c)" where "drop_map i == %(g, uu). (g i, (delete_map i g, uu))" definition lift_set :: "[nat, ('b * ((nat=>'b) * 'c)) set] => ((nat=>'b) * 'c) set" where "lift_set i A == lift_map i ` A" definition lift :: "[nat, ('b * ((nat=>'b) * 'c)) program] => ((nat=>'b) * 'c) program" where "lift i == rename (lift_map i)" (*simplifies the expression of specifications*) definition sub :: "['a, 'a=>'b] => 'b" where "sub == %i f. f i" declare insert_map_def [simp] delete_map_def [simp] lemma insert_map_inverse: "delete_map i (insert_map i x f) = f" by (rule ext, simp) lemma insert_map_delete_map_eq: "(insert_map i x (delete_map i g)) = g(i:=x)" apply (rule ext) apply (auto split: nat_diff_split) done subsection\Injectiveness proof\ lemma insert_map_inject1: "(insert_map i x f) = (insert_map i y g) ==> x=y" by (drule_tac x = i in fun_cong, simp) lemma insert_map_inject2: "(insert_map i x f) = (insert_map i y g) ==> f=g" apply (drule_tac f = "delete_map i" in arg_cong) apply (simp add: insert_map_inverse) done lemma insert_map_inject': "(insert_map i x f) = (insert_map i y g) ==> x=y & f=g" by (blast dest: insert_map_inject1 insert_map_inject2) lemmas insert_map_inject = insert_map_inject' [THEN conjE, elim!] (*The general case: we don't assume i=i'*) lemma lift_map_eq_iff [iff]: "(lift_map i (s,(f,uu)) = lift_map i' (s',(f',uu'))) = (uu = uu' & insert_map i s f = insert_map i' s' f')" by (unfold lift_map_def, auto) (*The !!s allows the automatic splitting of the bound variable*) lemma drop_map_lift_map_eq [simp]: "!!s. drop_map i (lift_map i s) = s" apply (unfold lift_map_def drop_map_def) apply (force intro: insert_map_inverse) done lemma inj_lift_map: "inj (lift_map i)" apply (unfold lift_map_def) apply (rule inj_onI, auto) done subsection\Surjectiveness proof\ lemma lift_map_drop_map_eq [simp]: "!!s. lift_map i (drop_map i s) = s" apply (unfold lift_map_def drop_map_def) apply (force simp add: insert_map_delete_map_eq) done lemma drop_map_inject [dest!]: "(drop_map i s) = (drop_map i s') ==> s=s'" by (drule_tac f = "lift_map i" in arg_cong, simp) lemma surj_lift_map: "surj (lift_map i)" apply (rule surjI) apply (rule lift_map_drop_map_eq) done lemma bij_lift_map [iff]: "bij (lift_map i)" by (simp add: bij_def inj_lift_map surj_lift_map) lemma inv_lift_map_eq [simp]: "inv (lift_map i) = drop_map i" by (rule inv_equality, auto) lemma inv_drop_map_eq [simp]: "inv (drop_map i) = lift_map i" by (rule inv_equality, auto) lemma bij_drop_map [iff]: "bij (drop_map i)" by (simp del: inv_lift_map_eq add: inv_lift_map_eq [symmetric] bij_imp_bij_inv) (*sub's main property!*) lemma sub_apply [simp]: "sub i f = f i" by (simp add: sub_def) lemma all_total_lift: "all_total F ==> all_total (lift i F)" by (simp add: lift_def rename_def Extend.all_total_extend) lemma insert_map_upd_same: "(insert_map i t f)(i := s) = insert_map i s f" by (rule ext, auto) lemma insert_map_upd: "(insert_map j t f)(i := s) = (if i=j then insert_map i s f else if iThis simplification is VERY slow\ done lemma insert_map_eq_diff: "[| insert_map i s f = insert_map j t g; i\j |] ==> \g'. insert_map i s' f = insert_map j t g'" apply (subst insert_map_upd_same [symmetric]) apply (erule ssubst) apply (simp only: insert_map_upd if_False split: if_split, blast) done lemma lift_map_eq_diff: "[| lift_map i (s,(f,uu)) = lift_map j (t,(g,vv)); i\j |] ==> \g'. lift_map i (s',(f,uu)) = lift_map j (t,(g',vv))" apply (unfold lift_map_def, auto) apply (blast dest: insert_map_eq_diff) done subsection\The Operator @{term lift_set}\ lemma lift_set_empty [simp]: "lift_set i {} = {}" by (unfold lift_set_def, auto) lemma lift_set_iff: "(lift_map i x \ lift_set i A) = (x \ A)" apply (unfold lift_set_def) apply (rule inj_lift_map [THEN inj_image_mem_iff]) done (*Do we really need both this one and its predecessor?*) lemma lift_set_iff2 [iff]: "((f,uu) \ lift_set i A) = ((f i, (delete_map i f, uu)) \ A)" by (simp add: lift_set_def mem_rename_set_iff drop_map_def) lemma lift_set_mono: "A \ B ==> lift_set i A \ lift_set i B" apply (unfold lift_set_def) apply (erule image_mono) done lemma lift_set_Un_distrib: "lift_set i (A \ B) = lift_set i A \ lift_set i B" by (simp add: lift_set_def image_Un) lemma lift_set_Diff_distrib: "lift_set i (A-B) = lift_set i A - lift_set i B" apply (unfold lift_set_def) apply (rule inj_lift_map [THEN image_set_diff]) done subsection\The Lattice Operations\ lemma bij_lift [iff]: "bij (lift i)" by (simp add: lift_def) lemma lift_SKIP [simp]: "lift i SKIP = SKIP" by (simp add: lift_def) lemma lift_Join [simp]: "lift i (F \ G) = lift i F \ lift i G" by (simp add: lift_def) lemma lift_JN [simp]: "lift j (JOIN I F) = (\i \ I. lift j (F i))" by (simp add: lift_def) subsection\Safety: constrains, stable, invariant\ lemma lift_constrains: "(lift i F \ (lift_set i A) co (lift_set i B)) = (F \ A co B)" by (simp add: lift_def lift_set_def rename_constrains) lemma lift_stable: "(lift i F \ stable (lift_set i A)) = (F \ stable A)" by (simp add: lift_def lift_set_def rename_stable) lemma lift_invariant: "(lift i F \ invariant (lift_set i A)) = (F \ invariant A)" by (simp add: lift_def lift_set_def rename_invariant) lemma lift_Constrains: "(lift i F \ (lift_set i A) Co (lift_set i B)) = (F \ A Co B)" by (simp add: lift_def lift_set_def rename_Constrains) lemma lift_Stable: "(lift i F \ Stable (lift_set i A)) = (F \ Stable A)" by (simp add: lift_def lift_set_def rename_Stable) lemma lift_Always: "(lift i F \ Always (lift_set i A)) = (F \ Always A)" by (simp add: lift_def lift_set_def rename_Always) subsection\Progress: transient, ensures\ lemma lift_transient: "(lift i F \ transient (lift_set i A)) = (F \ transient A)" by (simp add: lift_def lift_set_def rename_transient) lemma lift_ensures: "(lift i F \ (lift_set i A) ensures (lift_set i B)) = (F \ A ensures B)" by (simp add: lift_def lift_set_def rename_ensures) lemma lift_leadsTo: "(lift i F \ (lift_set i A) leadsTo (lift_set i B)) = (F \ A leadsTo B)" by (simp add: lift_def lift_set_def rename_leadsTo) lemma lift_LeadsTo: "(lift i F \ (lift_set i A) LeadsTo (lift_set i B)) = (F \ A LeadsTo B)" by (simp add: lift_def lift_set_def rename_LeadsTo) (** guarantees **) lemma lift_lift_guarantees_eq: "(lift i F \ (lift i ` X) guarantees (lift i ` Y)) = (F \ X guarantees Y)" apply (unfold lift_def) apply (subst bij_lift_map [THEN rename_rename_guarantees_eq, symmetric]) apply (simp add: o_def) done lemma lift_guarantees_eq_lift_inv: "(lift i F \ X guarantees Y) = (F \ (rename (drop_map i) ` X) guarantees (rename (drop_map i) ` Y))" by (simp add: bij_lift_map [THEN rename_guarantees_eq_rename_inv] lift_def) (*To preserve snd means that the second component is there just to allow guarantees properties to be stated. Converse fails, for lift i F can change function components other than i*) lemma lift_preserves_snd_I: "F \ preserves snd ==> lift i F \ preserves snd" apply (drule_tac w1=snd in subset_preserves_o [THEN subsetD]) apply (simp add: lift_def rename_preserves) apply (simp add: lift_map_def o_def split_def) done lemma delete_map_eqE': "(delete_map i g) = (delete_map i g') ==> \x. g = g'(i:=x)" apply (drule_tac f = "insert_map i (g i) " in arg_cong) apply (simp add: insert_map_delete_map_eq) apply (erule exI) done lemmas delete_map_eqE = delete_map_eqE' [THEN exE, elim!] lemma delete_map_neq_apply: "[| delete_map j g = delete_map j g'; i\j |] ==> g i = g' i" by force (*A set of the form (A \ UNIV) ignores the second (dummy) state component*) lemma vimage_o_fst_eq [simp]: "(f o fst) -` A = (f-`A) \ UNIV" by auto lemma vimage_sub_eq_lift_set [simp]: "(sub i -`A) \ UNIV = lift_set i (A \ UNIV)" by auto lemma mem_lift_act_iff [iff]: "((s,s') \ extend_act (%(x,u::unit). lift_map i x) act) = ((drop_map i s, drop_map i s') \ act)" apply (unfold extend_act_def, auto) apply (rule bexI, auto) done lemma preserves_snd_lift_stable: "[| F \ preserves snd; i\j |] ==> lift j F \ stable (lift_set i (A \ UNIV))" apply (auto simp add: lift_def lift_set_def stable_def constrains_def rename_def extend_def mem_rename_set_iff) apply (auto dest!: preserves_imp_eq simp add: lift_map_def drop_map_def) apply (drule_tac x = i in fun_cong, auto) done (*If i\j then lift j F does nothing to lift_set i, and the premise ensures A \ B.*) lemma constrains_imp_lift_constrains: "[| F i \ (A \ UNIV) co (B \ UNIV); F j \ preserves snd |] ==> lift j (F j) \ (lift_set i (A \ UNIV)) co (lift_set i (B \ UNIV))" apply (cases "i=j") apply (simp add: lift_def lift_set_def rename_constrains) apply (erule preserves_snd_lift_stable[THEN stableD, THEN constrains_weaken_R], assumption) apply (erule constrains_imp_subset [THEN lift_set_mono]) done (*USELESS??*) lemma lift_map_image_Times: "lift_map i ` (A \ UNIV) = (\s \ A. \f. {insert_map i s f}) \ UNIV" apply (auto intro!: bexI image_eqI simp add: lift_map_def) apply (rule split_conv [symmetric]) done lemma lift_preserves_eq: "(lift i F \ preserves v) = (F \ preserves (v o lift_map i))" by (simp add: lift_def rename_preserves) (*A useful rewrite. If o, sub have been rewritten out already then can also use it as rewrite_rule [sub_def, o_def] lift_preserves_sub*) lemma lift_preserves_sub: "F \ preserves snd ==> lift i F \ preserves (v o sub j o fst) = (if i=j then F \ preserves (v o fst) else True)" apply (drule subset_preserves_o [THEN subsetD]) apply (simp add: lift_preserves_eq o_def) apply (auto cong del: if_weak_cong simp add: lift_map_def eq_commute split_def o_def) done subsection\Lemmas to Handle Function Composition (o) More Consistently\ (*Lets us prove one version of a theorem and store others*) lemma o_equiv_assoc: "f o g = h ==> f' o f o g = f' o h" by (simp add: fun_eq_iff o_def) lemma o_equiv_apply: "f o g = h ==> \x. f(g x) = h x" by (simp add: fun_eq_iff o_def) lemma fst_o_lift_map: "sub i o fst o lift_map i = fst" apply (rule ext) apply (auto simp add: o_def lift_map_def sub_def) done lemma snd_o_lift_map: "snd o lift_map i = snd o snd" apply (rule ext) apply (auto simp add: o_def lift_map_def) done subsection\More lemmas about extend and project\ text\They could be moved to theory Extend or Project\ lemma extend_act_extend_act: "extend_act h' (extend_act h act) = extend_act (%(x,(y,y')). h'(h(x,y),y')) act" apply (auto elim!: rev_bexI simp add: extend_act_def, blast) done lemma project_act_project_act: "project_act h (project_act h' act) = project_act (%(x,(y,y')). h'(h(x,y),y')) act" by (auto elim!: rev_bexI simp add: project_act_def) lemma project_act_extend_act: "project_act h (extend_act h' act) = {(x,x'). \s s' y y' z. (s,s') \ act & h(x,y) = h'(s,z) & h(x',y') = h'(s',z)}" by (simp add: extend_act_def project_act_def, blast) subsection\OK and "lift"\ lemma act_in_UNION_preserves_fst: "act \ {(x,x'). fst x = fst x'} ==> act \ UNION (preserves fst) Acts" apply (rule_tac a = "mk_program (UNIV,{act},UNIV) " in UN_I) apply (auto simp add: preserves_def stable_def constrains_def) done lemma UNION_OK_lift_I: "[| \i \ I. F i \ preserves snd; \i \ I. UNION (preserves fst) Acts \ AllowedActs (F i) |] ==> OK I (%i. lift i (F i))" apply (auto simp add: OK_def lift_def rename_def Extend.Acts_extend) apply (simp add: Extend.AllowedActs_extend project_act_extend_act) apply (rename_tac "act") apply (subgoal_tac "{(x, x'). \s f u s' f' u'. ((s, f, u), s', f', u') \ act & lift_map j x = lift_map i (s, f, u) & lift_map j x' = lift_map i (s', f', u') } \ { (x,x') . fst x = fst x'}") apply (blast intro: act_in_UNION_preserves_fst, clarify) apply (drule_tac x = j in fun_cong)+ apply (drule_tac x = i in bspec, assumption) apply (frule preserves_imp_eq, auto) done lemma OK_lift_I: "[| \i \ I. F i \ preserves snd; \i \ I. preserves fst \ Allowed (F i) |] ==> OK I (%i. lift i (F i))" by (simp add: safety_prop_AllowedActs_iff_Allowed UNION_OK_lift_I) lemma Allowed_lift [simp]: "Allowed (lift i F) = lift i ` (Allowed F)" by (simp add: lift_def) lemma lift_image_preserves: "lift i ` preserves v = preserves (v o drop_map i)" by (simp add: rename_image_preserves lift_def) end