(* Title: HOL/UNITY/Comp/Alloc.thy Author: Lawrence C Paulson, Cambridge University Computer Laboratory Copyright 1998 University of Cambridge Specification of Chandy and Charpentier's Allocator *) theory Alloc imports AllocBase "../PPROD" begin subsection\State definitions. OUTPUT variables are locals\ record clientState = giv :: "nat list" \ \client's INPUT history: tokens GRANTED\ ask :: "nat list" \ \client's OUTPUT history: tokens REQUESTED\ rel :: "nat list" \ \client's OUTPUT history: tokens RELEASED\ record 'a clientState_d = clientState + dummy :: 'a \ \dummy field for new variables\ definition \ \DUPLICATED FROM Client.thy, but with "tok" removed\ \ \Maybe want a special theory section to declare such maps\ non_dummy :: "'a clientState_d => clientState" where "non_dummy s = (|giv = giv s, ask = ask s, rel = rel s|)" definition \ \Renaming map to put a Client into the standard form\ client_map :: "'a clientState_d => clientState*'a" where "client_map = funPair non_dummy dummy" record allocState = allocGiv :: "nat => nat list" \ \OUTPUT history: source of "giv" for i\ allocAsk :: "nat => nat list" \ \INPUT: allocator's copy of "ask" for i\ allocRel :: "nat => nat list" \ \INPUT: allocator's copy of "rel" for i\ record 'a allocState_d = allocState + dummy :: 'a \ \dummy field for new variables\ record 'a systemState = allocState + client :: "nat => clientState" \ \states of all clients\ dummy :: 'a \ \dummy field for new variables\ subsubsection \Resource allocation system specification\ definition \ \spec (1)\ system_safety :: "'a systemState program set" where "system_safety = Always {s. (\i \ lessThan Nclients. (tokens o giv o sub i o client)s) \ NbT + (\i \ lessThan Nclients. (tokens o rel o sub i o client)s)}" definition \ \spec (2)\ system_progress :: "'a systemState program set" where "system_progress = (INT i : lessThan Nclients. INT h. {s. h \ (ask o sub i o client)s} LeadsTo {s. h pfixLe (giv o sub i o client) s})" definition system_spec :: "'a systemState program set" where "system_spec = system_safety Int system_progress" subsubsection \Client specification (required)\ definition \ \spec (3)\ client_increasing :: "'a clientState_d program set" where "client_increasing = UNIV guarantees Increasing ask Int Increasing rel" definition \ \spec (4)\ client_bounded :: "'a clientState_d program set" where "client_bounded = UNIV guarantees Always {s. \elt \ set (ask s). elt \ NbT}" definition \ \spec (5)\ client_progress :: "'a clientState_d program set" where "client_progress = Increasing giv guarantees (INT h. {s. h \ giv s & h pfixGe ask s} LeadsTo {s. tokens h \ (tokens o rel) s})" definition \ \spec: preserves part\ client_preserves :: "'a clientState_d program set" where "client_preserves = preserves giv Int preserves clientState_d.dummy" definition \ \environmental constraints\ client_allowed_acts :: "'a clientState_d program set" where "client_allowed_acts = {F. AllowedActs F = insert Id (UNION (preserves (funPair rel ask)) Acts)}" definition client_spec :: "'a clientState_d program set" where "client_spec = client_increasing Int client_bounded Int client_progress Int client_allowed_acts Int client_preserves" subsubsection \Allocator specification (required)\ definition \ \spec (6)\ alloc_increasing :: "'a allocState_d program set" where "alloc_increasing = UNIV guarantees (INT i : lessThan Nclients. Increasing (sub i o allocGiv))" definition \ \spec (7)\ alloc_safety :: "'a allocState_d program set" where "alloc_safety = (INT i : lessThan Nclients. Increasing (sub i o allocRel)) guarantees Always {s. (\i \ lessThan Nclients. (tokens o sub i o allocGiv)s) \ NbT + (\i \ lessThan Nclients. (tokens o sub i o allocRel)s)}" definition \ \spec (8)\ alloc_progress :: "'a allocState_d program set" where "alloc_progress = (INT i : lessThan Nclients. Increasing (sub i o allocAsk) Int Increasing (sub i o allocRel)) Int Always {s. \ielt \ set ((sub i o allocAsk) s). elt \ NbT} Int (INT i : lessThan Nclients. INT h. {s. h \ (sub i o allocGiv)s & h pfixGe (sub i o allocAsk)s} LeadsTo {s. tokens h \ (tokens o sub i o allocRel)s}) guarantees (INT i : lessThan Nclients. INT h. {s. h \ (sub i o allocAsk) s} LeadsTo {s. h pfixLe (sub i o allocGiv) s})" (*NOTE: to follow the original paper, the formula above should have had INT h. {s. h i \ (sub i o allocGiv)s & h i pfixGe (sub i o allocAsk)s} LeadsTo {s. tokens h i \ (tokens o sub i o allocRel)s}) thus h should have been a function variable. However, only h i is ever looked at.*) definition \ \spec: preserves part\ alloc_preserves :: "'a allocState_d program set" where "alloc_preserves = preserves allocRel Int preserves allocAsk Int preserves allocState_d.dummy" definition \ \environmental constraints\ alloc_allowed_acts :: "'a allocState_d program set" where "alloc_allowed_acts = {F. AllowedActs F = insert Id (UNION (preserves allocGiv) Acts)}" definition alloc_spec :: "'a allocState_d program set" where "alloc_spec = alloc_increasing Int alloc_safety Int alloc_progress Int alloc_allowed_acts Int alloc_preserves" subsubsection \Network specification\ definition \ \spec (9.1)\ network_ask :: "'a systemState program set" where "network_ask = (INT i : lessThan Nclients. Increasing (ask o sub i o client) guarantees ((sub i o allocAsk) Fols (ask o sub i o client)))" definition \ \spec (9.2)\ network_giv :: "'a systemState program set" where "network_giv = (INT i : lessThan Nclients. Increasing (sub i o allocGiv) guarantees ((giv o sub i o client) Fols (sub i o allocGiv)))" definition \ \spec (9.3)\ network_rel :: "'a systemState program set" where "network_rel = (INT i : lessThan Nclients. Increasing (rel o sub i o client) guarantees ((sub i o allocRel) Fols (rel o sub i o client)))" definition \ \spec: preserves part\ network_preserves :: "'a systemState program set" where "network_preserves = preserves allocGiv Int (INT i : lessThan Nclients. preserves (rel o sub i o client) Int preserves (ask o sub i o client))" definition \ \environmental constraints\ network_allowed_acts :: "'a systemState program set" where "network_allowed_acts = {F. AllowedActs F = insert Id (UNION (preserves allocRel Int (INT i: lessThan Nclients. preserves(giv o sub i o client))) Acts)}" definition network_spec :: "'a systemState program set" where "network_spec = network_ask Int network_giv Int network_rel Int network_allowed_acts Int network_preserves" subsubsection \State mappings\ definition sysOfAlloc :: "((nat => clientState) * 'a) allocState_d => 'a systemState" where "sysOfAlloc = (%s. let (cl,xtr) = allocState_d.dummy s in (| allocGiv = allocGiv s, allocAsk = allocAsk s, allocRel = allocRel s, client = cl, dummy = xtr|))" definition sysOfClient :: "(nat => clientState) * 'a allocState_d => 'a systemState" where "sysOfClient = (%(cl,al). (| allocGiv = allocGiv al, allocAsk = allocAsk al, allocRel = allocRel al, client = cl, systemState.dummy = allocState_d.dummy al|))" axiomatization Alloc :: "'a allocState_d program" where Alloc: "Alloc \ alloc_spec" axiomatization Client :: "'a clientState_d program" where Client: "Client \ client_spec" axiomatization Network :: "'a systemState program" where Network: "Network \ network_spec" definition System :: "'a systemState program" where "System = rename sysOfAlloc Alloc \ Network \ (rename sysOfClient (plam x: lessThan Nclients. rename client_map Client))" (** locale System = fixes Alloc :: 'a allocState_d program Client :: 'a clientState_d program Network :: 'a systemState program System :: 'a systemState program assumes Alloc "Alloc : alloc_spec" Client "Client : client_spec" Network "Network : network_spec" defines System_def "System == rename sysOfAlloc Alloc \ Network \ (rename sysOfClient (plam x: lessThan Nclients. rename client_map Client))" **) declare subset_preserves_o [THEN [2] rev_subsetD, intro] declare subset_preserves_o [THEN [2] rev_subsetD, simp] declare funPair_o_distrib [simp] declare Always_INT_distrib [simp] declare o_apply [simp del] (*For rewriting of specifications related by "guarantees"*) lemmas [simp] = rename_image_constrains rename_image_stable rename_image_increasing rename_image_invariant rename_image_Constrains rename_image_Stable rename_image_Increasing rename_image_Always rename_image_leadsTo rename_image_LeadsTo rename_preserves rename_image_preserves lift_image_preserves bij_image_INT bij_is_inj [THEN image_Int] bij_image_Collect_eq ML \ (*Splits up conjunctions & intersections: like CONJUNCTS in the HOL system*) fun list_of_Int th = (list_of_Int (th RS conjunct1) @ list_of_Int (th RS conjunct2)) handle THM _ => (list_of_Int (th RS IntD1) @ list_of_Int (th RS IntD2)) handle THM _ => (list_of_Int (th RS @{thm INT_D})) handle THM _ => (list_of_Int (th RS bspec)) handle THM _ => [th]; \ lemmas lessThanBspec = lessThan_iff [THEN iffD2, THEN [2] bspec] attribute_setup normalized = \ let fun normalized th = normalized (th RS spec handle THM _ => th RS @{thm lessThanBspec} handle THM _ => th RS bspec handle THM _ => th RS (@{thm guarantees_INT_right_iff} RS iffD1)) handle THM _ => th; in Scan.succeed (Thm.rule_attribute [] (K normalized)) end \ (*** bijectivity of sysOfAlloc [MUST BE AUTOMATED] ***) ML \ fun record_auto_tac ctxt = let val ctxt' = ctxt addSWrapper Record.split_wrapper addsimps [@{thm sysOfAlloc_def}, @{thm sysOfClient_def}, @{thm client_map_def}, @{thm non_dummy_def}, @{thm funPair_def}, @{thm o_apply}, @{thm Let_def}] in auto_tac ctxt' end; \ method_setup record_auto = \Scan.succeed (SIMPLE_METHOD o record_auto_tac)\ lemma inj_sysOfAlloc [iff]: "inj sysOfAlloc" apply (unfold sysOfAlloc_def Let_def) apply (rule inj_onI) apply record_auto done text\We need the inverse; also having it simplifies the proof of surjectivity\ lemma inv_sysOfAlloc_eq [simp]: "!!s. inv sysOfAlloc s = (| allocGiv = allocGiv s, allocAsk = allocAsk s, allocRel = allocRel s, allocState_d.dummy = (client s, dummy s) |)" apply (rule inj_sysOfAlloc [THEN inv_f_eq]) apply record_auto done lemma surj_sysOfAlloc [iff]: "surj sysOfAlloc" apply (simp add: surj_iff_all) apply record_auto done lemma bij_sysOfAlloc [iff]: "bij sysOfAlloc" apply (blast intro: bijI) done subsubsection\bijectivity of @{term sysOfClient}\ lemma inj_sysOfClient [iff]: "inj sysOfClient" apply (unfold sysOfClient_def) apply (rule inj_onI) apply record_auto done lemma inv_sysOfClient_eq [simp]: "!!s. inv sysOfClient s = (client s, (| allocGiv = allocGiv s, allocAsk = allocAsk s, allocRel = allocRel s, allocState_d.dummy = systemState.dummy s|) )" apply (rule inj_sysOfClient [THEN inv_f_eq]) apply record_auto done lemma surj_sysOfClient [iff]: "surj sysOfClient" apply (simp add: surj_iff_all) apply record_auto done lemma bij_sysOfClient [iff]: "bij sysOfClient" apply (blast intro: bijI) done subsubsection\bijectivity of @{term client_map}\ lemma inj_client_map [iff]: "inj client_map" apply (unfold inj_on_def) apply record_auto done lemma inv_client_map_eq [simp]: "!!s. inv client_map s = (%(x,y).(|giv = giv x, ask = ask x, rel = rel x, clientState_d.dummy = y|)) s" apply (rule inj_client_map [THEN inv_f_eq]) apply record_auto done lemma surj_client_map [iff]: "surj client_map" apply (simp add: surj_iff_all) apply record_auto done lemma bij_client_map [iff]: "bij client_map" apply (blast intro: bijI) done text\o-simprules for @{term client_map}\ lemma fst_o_client_map: "fst o client_map = non_dummy" apply (unfold client_map_def) apply (rule fst_o_funPair) done ML \ML_Thms.bind_thms ("fst_o_client_map'", make_o_equivs @{context} @{thm fst_o_client_map})\ declare fst_o_client_map' [simp] lemma snd_o_client_map: "snd o client_map = clientState_d.dummy" apply (unfold client_map_def) apply (rule snd_o_funPair) done ML \ML_Thms.bind_thms ("snd_o_client_map'", make_o_equivs @{context} @{thm snd_o_client_map})\ declare snd_o_client_map' [simp] subsection\o-simprules for @{term sysOfAlloc} [MUST BE AUTOMATED]\ lemma client_o_sysOfAlloc: "client o sysOfAlloc = fst o allocState_d.dummy " apply record_auto done ML \ML_Thms.bind_thms ("client_o_sysOfAlloc'", make_o_equivs @{context} @{thm client_o_sysOfAlloc})\ declare client_o_sysOfAlloc' [simp] lemma allocGiv_o_sysOfAlloc_eq: "allocGiv o sysOfAlloc = allocGiv" apply record_auto done ML \ML_Thms.bind_thms ("allocGiv_o_sysOfAlloc_eq'", make_o_equivs @{context} @{thm allocGiv_o_sysOfAlloc_eq})\ declare allocGiv_o_sysOfAlloc_eq' [simp] lemma allocAsk_o_sysOfAlloc_eq: "allocAsk o sysOfAlloc = allocAsk" apply record_auto done ML \ML_Thms.bind_thms ("allocAsk_o_sysOfAlloc_eq'", make_o_equivs @{context} @{thm allocAsk_o_sysOfAlloc_eq})\ declare allocAsk_o_sysOfAlloc_eq' [simp] lemma allocRel_o_sysOfAlloc_eq: "allocRel o sysOfAlloc = allocRel" apply record_auto done ML \ML_Thms.bind_thms ("allocRel_o_sysOfAlloc_eq'", make_o_equivs @{context} @{thm allocRel_o_sysOfAlloc_eq})\ declare allocRel_o_sysOfAlloc_eq' [simp] subsection\o-simprules for @{term sysOfClient} [MUST BE AUTOMATED]\ lemma client_o_sysOfClient: "client o sysOfClient = fst" apply record_auto done ML \ML_Thms.bind_thms ("client_o_sysOfClient'", make_o_equivs @{context} @{thm client_o_sysOfClient})\ declare client_o_sysOfClient' [simp] lemma allocGiv_o_sysOfClient_eq: "allocGiv o sysOfClient = allocGiv o snd " apply record_auto done ML \ML_Thms.bind_thms ("allocGiv_o_sysOfClient_eq'", make_o_equivs @{context} @{thm allocGiv_o_sysOfClient_eq})\ declare allocGiv_o_sysOfClient_eq' [simp] lemma allocAsk_o_sysOfClient_eq: "allocAsk o sysOfClient = allocAsk o snd " apply record_auto done ML \ML_Thms.bind_thms ("allocAsk_o_sysOfClient_eq'", make_o_equivs @{context} @{thm allocAsk_o_sysOfClient_eq})\ declare allocAsk_o_sysOfClient_eq' [simp] lemma allocRel_o_sysOfClient_eq: "allocRel o sysOfClient = allocRel o snd " apply record_auto done ML \ML_Thms.bind_thms ("allocRel_o_sysOfClient_eq'", make_o_equivs @{context} @{thm allocRel_o_sysOfClient_eq})\ declare allocRel_o_sysOfClient_eq' [simp] lemma allocGiv_o_inv_sysOfAlloc_eq: "allocGiv o inv sysOfAlloc = allocGiv" apply (simp add: o_def) done ML \ML_Thms.bind_thms ("allocGiv_o_inv_sysOfAlloc_eq'", make_o_equivs @{context} @{thm allocGiv_o_inv_sysOfAlloc_eq})\ declare allocGiv_o_inv_sysOfAlloc_eq' [simp] lemma allocAsk_o_inv_sysOfAlloc_eq: "allocAsk o inv sysOfAlloc = allocAsk" apply (simp add: o_def) done ML \ML_Thms.bind_thms ("allocAsk_o_inv_sysOfAlloc_eq'", make_o_equivs @{context} @{thm allocAsk_o_inv_sysOfAlloc_eq})\ declare allocAsk_o_inv_sysOfAlloc_eq' [simp] lemma allocRel_o_inv_sysOfAlloc_eq: "allocRel o inv sysOfAlloc = allocRel" apply (simp add: o_def) done ML \ML_Thms.bind_thms ("allocRel_o_inv_sysOfAlloc_eq'", make_o_equivs @{context} @{thm allocRel_o_inv_sysOfAlloc_eq})\ declare allocRel_o_inv_sysOfAlloc_eq' [simp] lemma rel_inv_client_map_drop_map: "(rel o inv client_map o drop_map i o inv sysOfClient) = rel o sub i o client" apply (simp add: o_def drop_map_def) done ML \ML_Thms.bind_thms ("rel_inv_client_map_drop_map'", make_o_equivs @{context} @{thm rel_inv_client_map_drop_map})\ declare rel_inv_client_map_drop_map [simp] lemma ask_inv_client_map_drop_map: "(ask o inv client_map o drop_map i o inv sysOfClient) = ask o sub i o client" apply (simp add: o_def drop_map_def) done ML \ML_Thms.bind_thms ("ask_inv_client_map_drop_map'", make_o_equivs @{context} @{thm ask_inv_client_map_drop_map})\ declare ask_inv_client_map_drop_map [simp] text\Client : \ lemmas client_spec_simps = client_spec_def client_increasing_def client_bounded_def client_progress_def client_allowed_acts_def client_preserves_def guarantees_Int_right ML \ val [Client_Increasing_ask, Client_Increasing_rel, Client_Bounded, Client_Progress, Client_AllowedActs, Client_preserves_giv, Client_preserves_dummy] = @{thm Client} |> simplify (@{context} addsimps @{thms client_spec_simps}) |> list_of_Int; ML_Thms.bind_thm ("Client_Increasing_ask", Client_Increasing_ask); ML_Thms.bind_thm ("Client_Increasing_rel", Client_Increasing_rel); ML_Thms.bind_thm ("Client_Bounded", Client_Bounded); ML_Thms.bind_thm ("Client_Progress", Client_Progress); ML_Thms.bind_thm ("Client_AllowedActs", Client_AllowedActs); ML_Thms.bind_thm ("Client_preserves_giv", Client_preserves_giv); ML_Thms.bind_thm ("Client_preserves_dummy", Client_preserves_dummy); \ declare Client_Increasing_ask [iff] Client_Increasing_rel [iff] Client_Bounded [iff] Client_preserves_giv [iff] Client_preserves_dummy [iff] text\Network : \ lemmas network_spec_simps = network_spec_def network_ask_def network_giv_def network_rel_def network_allowed_acts_def network_preserves_def ball_conj_distrib ML \ val [Network_Ask, Network_Giv, Network_Rel, Network_AllowedActs, Network_preserves_allocGiv, Network_preserves_rel, Network_preserves_ask] = @{thm Network} |> simplify (@{context} addsimps @{thms network_spec_simps}) |> list_of_Int; ML_Thms.bind_thm ("Network_Ask", Network_Ask); ML_Thms.bind_thm ("Network_Giv", Network_Giv); ML_Thms.bind_thm ("Network_Rel", Network_Rel); ML_Thms.bind_thm ("Network_AllowedActs", Network_AllowedActs); ML_Thms.bind_thm ("Network_preserves_allocGiv", Network_preserves_allocGiv); ML_Thms.bind_thm ("Network_preserves_rel", Network_preserves_rel); ML_Thms.bind_thm ("Network_preserves_ask", Network_preserves_ask); \ declare Network_preserves_allocGiv [iff] declare Network_preserves_rel [simp] Network_preserves_ask [simp] declare Network_preserves_rel [simplified o_def, simp] Network_preserves_ask [simplified o_def, simp] text\Alloc : \ lemmas alloc_spec_simps = alloc_spec_def alloc_increasing_def alloc_safety_def alloc_progress_def alloc_allowed_acts_def alloc_preserves_def ML \ val [Alloc_Increasing_0, Alloc_Safety, Alloc_Progress, Alloc_AllowedActs, Alloc_preserves_allocRel, Alloc_preserves_allocAsk, Alloc_preserves_dummy] = @{thm Alloc} |> simplify (@{context} addsimps @{thms alloc_spec_simps}) |> list_of_Int; ML_Thms.bind_thm ("Alloc_Increasing_0", Alloc_Increasing_0); ML_Thms.bind_thm ("Alloc_Safety", Alloc_Safety); ML_Thms.bind_thm ("Alloc_Progress", Alloc_Progress); ML_Thms.bind_thm ("Alloc_AllowedActs", Alloc_AllowedActs); ML_Thms.bind_thm ("Alloc_preserves_allocRel", Alloc_preserves_allocRel); ML_Thms.bind_thm ("Alloc_preserves_allocAsk", Alloc_preserves_allocAsk); ML_Thms.bind_thm ("Alloc_preserves_dummy", Alloc_preserves_dummy); \ text\Strip off the INT in the guarantees postcondition\ lemmas Alloc_Increasing = Alloc_Increasing_0 [normalized] declare Alloc_preserves_allocRel [iff] Alloc_preserves_allocAsk [iff] Alloc_preserves_dummy [iff] subsection\Components Lemmas [MUST BE AUTOMATED]\ lemma Network_component_System: "Network \ ((rename sysOfClient (plam x: (lessThan Nclients). rename client_map Client)) \ rename sysOfAlloc Alloc) = System" by (simp add: System_def Join_ac) lemma Client_component_System: "(rename sysOfClient (plam x: (lessThan Nclients). rename client_map Client)) \ (Network \ rename sysOfAlloc Alloc) = System" by (simp add: System_def Join_ac) lemma Alloc_component_System: "rename sysOfAlloc Alloc \ ((rename sysOfClient (plam x: (lessThan Nclients). rename client_map Client)) \ Network) = System" by (simp add: System_def Join_ac) declare Client_component_System [iff] Network_component_System [iff] Alloc_component_System [iff] text\* These preservation laws should be generated automatically *\ lemma Client_Allowed [simp]: "Allowed Client = preserves rel Int preserves ask" by (auto simp add: Allowed_def Client_AllowedActs safety_prop_Acts_iff) lemma Network_Allowed [simp]: "Allowed Network = preserves allocRel Int (INT i: lessThan Nclients. preserves(giv o sub i o client))" by (auto simp add: Allowed_def Network_AllowedActs safety_prop_Acts_iff) lemma Alloc_Allowed [simp]: "Allowed Alloc = preserves allocGiv" by (auto simp add: Allowed_def Alloc_AllowedActs safety_prop_Acts_iff) text\needed in \rename_client_map_tac\\ lemma OK_lift_rename_Client [simp]: "OK I (%i. lift i (rename client_map Client))" apply (rule OK_lift_I) apply auto apply (drule_tac w1 = rel in subset_preserves_o [THEN [2] rev_subsetD]) apply (drule_tac [2] w1 = ask in subset_preserves_o [THEN [2] rev_subsetD]) apply (auto simp add: o_def split_def) done lemma fst_lift_map_eq_fst [simp]: "fst (lift_map i x) i = fst x" apply (insert fst_o_lift_map [of i]) apply (drule fun_cong [where x=x]) apply (simp add: o_def) done lemma fst_o_lift_map' [simp]: "(f \ sub i \ fst \ lift_map i \ g) = f o fst o g" apply (subst fst_o_lift_map [symmetric]) apply (simp only: o_assoc) done (*The proofs of rename_Client_Increasing, rename_Client_Bounded and rename_Client_Progress are similar. All require copying out the original Client property. A forward proof can be constructed as follows: Client_Increasing_ask RS (bij_client_map RS rename_rename_guarantees_eq RS iffD2) RS (lift_lift_guarantees_eq RS iffD2) RS guarantees_PLam_I RS (bij_sysOfClient RS rename_rename_guarantees_eq RS iffD2) |> simplify (simpset() addsimps [lift_image_eq_rename, o_def, split_def, surj_rename]) However, the "preserves" property remains to be discharged, and the unfolding of "o" and "sub" complicates subsequent reasoning. The following tactic works for all three proofs, though it certainly looks ad-hoc! *) ML \ fun rename_client_map_tac ctxt = EVERY [ simp_tac (ctxt addsimps [@{thm rename_guarantees_eq_rename_inv}]) 1, resolve_tac ctxt @{thms guarantees_PLam_I} 1, assume_tac ctxt 2, (*preserves: routine reasoning*) asm_simp_tac (ctxt addsimps [@{thm lift_preserves_sub}]) 2, (*the guarantee for "lift i (rename client_map Client)" *) asm_simp_tac (ctxt addsimps [@{thm lift_guarantees_eq_lift_inv}, @{thm rename_guarantees_eq_rename_inv}, @{thm bij_imp_bij_inv}, @{thm surj_rename}, @{thm inv_inv_eq}]) 1, asm_simp_tac (ctxt addsimps [@{thm o_def}, @{thm non_dummy_def}, @{thm guarantees_Int_right}]) 1] \ method_setup rename_client_map = \ Scan.succeed (fn ctxt => SIMPLE_METHOD (rename_client_map_tac ctxt)) \ text\Lifting \Client_Increasing\ to @{term systemState}\ lemma rename_Client_Increasing: "i \ I ==> rename sysOfClient (plam x: I. rename client_map Client) \ UNIV guarantees Increasing (ask o sub i o client) Int Increasing (rel o sub i o client)" by rename_client_map lemma preserves_sub_fst_lift_map: "[| F \ preserves w; i \ j |] ==> F \ preserves (sub i o fst o lift_map j o funPair v w)" apply (auto simp add: lift_map_def split_def linorder_neq_iff o_def) apply (drule_tac [!] subset_preserves_o [THEN [2] rev_subsetD]) apply (auto simp add: o_def) done lemma client_preserves_giv_oo_client_map: "[| i < Nclients; j < Nclients |] ==> Client \ preserves (giv o sub i o fst o lift_map j o client_map)" apply (cases "i=j") apply (simp, simp add: o_def non_dummy_def) apply (drule Client_preserves_dummy [THEN preserves_sub_fst_lift_map]) apply (drule_tac [!] subset_preserves_o [THEN [2] rev_subsetD]) apply (simp add: o_def client_map_def) done lemma rename_sysOfClient_ok_Network: "rename sysOfClient (plam x: lessThan Nclients. rename client_map Client) ok Network" by (auto simp add: ok_iff_Allowed client_preserves_giv_oo_client_map) lemma rename_sysOfClient_ok_Alloc: "rename sysOfClient (plam x: lessThan Nclients. rename client_map Client) ok rename sysOfAlloc Alloc" by (simp add: ok_iff_Allowed) lemma rename_sysOfAlloc_ok_Network: "rename sysOfAlloc Alloc ok Network" by (simp add: ok_iff_Allowed) declare rename_sysOfClient_ok_Network [iff] rename_sysOfClient_ok_Alloc [iff] rename_sysOfAlloc_ok_Network [iff] text\The "ok" laws, re-oriented. But not sure this works: theorem \ok_commute\ is needed below\ declare rename_sysOfClient_ok_Network [THEN ok_sym, iff] rename_sysOfClient_ok_Alloc [THEN ok_sym, iff] rename_sysOfAlloc_ok_Network [THEN ok_sym] lemma System_Increasing: "i < Nclients ==> System \ Increasing (ask o sub i o client) Int Increasing (rel o sub i o client)" apply (rule component_guaranteesD [OF rename_Client_Increasing Client_component_System]) apply auto done lemmas rename_guarantees_sysOfAlloc_I = bij_sysOfAlloc [THEN rename_rename_guarantees_eq, THEN iffD2] (*Lifting Alloc_Increasing up to the level of systemState*) lemmas rename_Alloc_Increasing = Alloc_Increasing [THEN rename_guarantees_sysOfAlloc_I, simplified surj_rename o_def sub_apply rename_image_Increasing bij_sysOfAlloc allocGiv_o_inv_sysOfAlloc_eq'] lemma System_Increasing_allocGiv: "i < Nclients \ System \ Increasing (sub i o allocGiv)" apply (unfold System_def) apply (simp add: o_def) apply (rule rename_Alloc_Increasing [THEN guarantees_Join_I1, THEN guaranteesD]) apply auto done ML \ ML_Thms.bind_thms ("System_Increasing'", list_of_Int @{thm System_Increasing}) \ declare System_Increasing' [intro!] text\Follows consequences. The "Always (INT ...) formulation expresses the general safety property and allows it to be combined using \Always_Int_rule\ below.\ lemma System_Follows_rel: "i < Nclients ==> System \ ((sub i o allocRel) Fols (rel o sub i o client))" apply (auto intro!: Network_Rel [THEN component_guaranteesD]) apply (simp add: ok_commute [of Network]) done lemma System_Follows_ask: "i < Nclients ==> System \ ((sub i o allocAsk) Fols (ask o sub i o client))" apply (auto intro!: Network_Ask [THEN component_guaranteesD]) apply (simp add: ok_commute [of Network]) done lemma System_Follows_allocGiv: "i < Nclients ==> System \ (giv o sub i o client) Fols (sub i o allocGiv)" apply (auto intro!: Network_Giv [THEN component_guaranteesD] rename_Alloc_Increasing [THEN component_guaranteesD]) apply (simp_all add: o_def non_dummy_def ok_commute [of Network]) apply (auto intro!: rename_Alloc_Increasing [THEN component_guaranteesD]) done lemma Always_giv_le_allocGiv: "System \ Always (INT i: lessThan Nclients. {s. (giv o sub i o client) s \ (sub i o allocGiv) s})" apply auto apply (erule System_Follows_allocGiv [THEN Follows_Bounded]) done lemma Always_allocAsk_le_ask: "System \ Always (INT i: lessThan Nclients. {s. (sub i o allocAsk) s \ (ask o sub i o client) s})" apply auto apply (erule System_Follows_ask [THEN Follows_Bounded]) done lemma Always_allocRel_le_rel: "System \ Always (INT i: lessThan Nclients. {s. (sub i o allocRel) s \ (rel o sub i o client) s})" by (auto intro!: Follows_Bounded System_Follows_rel) subsection\Proof of the safety property (1)\ text\safety (1), step 1 is \System_Follows_rel\\ text\safety (1), step 2\ (* i < Nclients ==> System : Increasing (sub i o allocRel) *) lemmas System_Increasing_allocRel = System_Follows_rel [THEN Follows_Increasing1] (*Lifting Alloc_safety up to the level of systemState. Simplifying with o_def gets rid of the translations but it unfortunately gets rid of the other "o"s too.*) text\safety (1), step 3\ lemma System_sum_bounded: "System \ Always {s. (\i \ lessThan Nclients. (tokens o sub i o allocGiv) s) \ NbT + (\i \ lessThan Nclients. (tokens o sub i o allocRel) s)}" apply (simp add: o_apply) apply (insert Alloc_Safety [THEN rename_guarantees_sysOfAlloc_I]) apply (simp add: o_def) apply (erule component_guaranteesD) apply (auto simp add: System_Increasing_allocRel [simplified sub_apply o_def]) done text\Follows reasoning\ lemma Always_tokens_giv_le_allocGiv: "System \ Always (INT i: lessThan Nclients. {s. (tokens o giv o sub i o client) s \ (tokens o sub i o allocGiv) s})" apply (rule Always_giv_le_allocGiv [THEN Always_weaken]) apply (auto intro: tokens_mono_prefix simp add: o_apply) done lemma Always_tokens_allocRel_le_rel: "System \ Always (INT i: lessThan Nclients. {s. (tokens o sub i o allocRel) s \ (tokens o rel o sub i o client) s})" apply (rule Always_allocRel_le_rel [THEN Always_weaken]) apply (auto intro: tokens_mono_prefix simp add: o_apply) done text\safety (1), step 4 (final result!)\ theorem System_safety: "System \ system_safety" apply (unfold system_safety_def) apply (tactic \resolve_tac @{context} [Always_Int_rule [@{thm System_sum_bounded}, @{thm Always_tokens_giv_le_allocGiv}, @{thm Always_tokens_allocRel_le_rel}] RS @{thm Always_weaken}] 1\) apply auto apply (rule sum_fun_mono [THEN order_trans]) apply (drule_tac [2] order_trans) apply (rule_tac [2] add_le_mono [OF order_refl sum_fun_mono]) prefer 3 apply assumption apply auto done subsection \Proof of the progress property (2)\ text\progress (2), step 1 is \System_Follows_ask\ and \System_Follows_rel\\ text\progress (2), step 2; see also \System_Increasing_allocRel\\ (* i < Nclients ==> System : Increasing (sub i o allocAsk) *) lemmas System_Increasing_allocAsk = System_Follows_ask [THEN Follows_Increasing1] text\progress (2), step 3: lifting \Client_Bounded\ to systemState\ lemma rename_Client_Bounded: "i \ I ==> rename sysOfClient (plam x: I. rename client_map Client) \ UNIV guarantees Always {s. \elt \ set ((ask o sub i o client) s). elt \ NbT}" by rename_client_map lemma System_Bounded_ask: "i < Nclients ==> System \ Always {s. \elt \ set ((ask o sub i o client) s). elt \ NbT}" apply (rule component_guaranteesD [OF rename_Client_Bounded Client_component_System]) apply auto done lemma Collect_all_imp_eq: "{x. \y. P y \ Q x y} = (INT y: {y. P y}. {x. Q x y})" apply blast done text\progress (2), step 4\ lemma System_Bounded_allocAsk: "System \ Always {s. \ielt \ set ((sub i o allocAsk) s). elt \ NbT}" apply (auto simp add: Collect_all_imp_eq) apply (tactic \resolve_tac @{context} [Always_Int_rule [@{thm Always_allocAsk_le_ask}, @{thm System_Bounded_ask}] RS @{thm Always_weaken}] 1\) apply (auto dest: set_mono) done text\progress (2), step 5 is \System_Increasing_allocGiv\\ text\progress (2), step 6\ (* i < Nclients ==> System : Increasing (giv o sub i o client) *) lemmas System_Increasing_giv = System_Follows_allocGiv [THEN Follows_Increasing1] lemma rename_Client_Progress: "i \ I ==> rename sysOfClient (plam x: I. rename client_map Client) \ Increasing (giv o sub i o client) guarantees (INT h. {s. h \ (giv o sub i o client) s & h pfixGe (ask o sub i o client) s} LeadsTo {s. tokens h \ (tokens o rel o sub i o client) s})" apply rename_client_map apply (simp add: Client_Progress [simplified o_def]) done text\progress (2), step 7\ lemma System_Client_Progress: "System \ (INT i : (lessThan Nclients). INT h. {s. h \ (giv o sub i o client) s & h pfixGe (ask o sub i o client) s} LeadsTo {s. tokens h \ (tokens o rel o sub i o client) s})" apply (rule INT_I) (*Couldn't have just used Auto_tac since the "INT h" must be kept*) apply (rule component_guaranteesD [OF rename_Client_Progress Client_component_System]) apply (auto simp add: System_Increasing_giv) done (*Concludes System : {s. k \ (sub i o allocGiv) s} LeadsTo {s. (sub i o allocAsk) s \ (ask o sub i o client) s} Int {s. k \ (giv o sub i o client) s} *) lemmas System_lemma1 = Always_LeadsToD [OF System_Follows_ask [THEN Follows_Bounded] System_Follows_allocGiv [THEN Follows_LeadsTo]] lemmas System_lemma2 = PSP_Stable [OF System_lemma1 System_Follows_ask [THEN Follows_Increasing1, THEN IncreasingD]] lemma System_lemma3: "i < Nclients ==> System \ {s. h \ (sub i o allocGiv) s & h pfixGe (sub i o allocAsk) s} LeadsTo {s. h \ (giv o sub i o client) s & h pfixGe (ask o sub i o client) s}" apply (rule single_LeadsTo_I) apply (rule_tac k1 = h and x1 = "(sub i o allocAsk) s" in System_lemma2 [THEN LeadsTo_weaken]) apply auto apply (blast intro: trans_Ge [THEN trans_genPrefix, THEN transD] prefix_imp_pfixGe) done text\progress (2), step 8: Client i's "release" action is visible system-wide\ lemma System_Alloc_Client_Progress: "i < Nclients ==> System \ {s. h \ (sub i o allocGiv) s & h pfixGe (sub i o allocAsk) s} LeadsTo {s. tokens h \ (tokens o sub i o allocRel) s}" apply (rule LeadsTo_Trans) prefer 2 apply (drule System_Follows_rel [THEN mono_tokens [THEN mono_Follows_o, THEN [2] rev_subsetD], THEN Follows_LeadsTo]) apply (simp add: o_assoc) apply (rule LeadsTo_Trans) apply (cut_tac [2] System_Client_Progress) prefer 2 apply (blast intro: LeadsTo_Basis) apply (erule System_lemma3) done text\Lifting \Alloc_Progress\ up to the level of systemState\ text\progress (2), step 9\ lemma System_Alloc_Progress: "System \ (INT i : (lessThan Nclients). INT h. {s. h \ (sub i o allocAsk) s} LeadsTo {s. h pfixLe (sub i o allocGiv) s})" apply (simp only: o_apply sub_def) apply (insert Alloc_Progress [THEN rename_guarantees_sysOfAlloc_I]) apply (simp add: o_def del: INT_iff) apply (drule component_guaranteesD) apply (auto simp add: System_Increasing_allocRel [simplified sub_apply o_def] System_Increasing_allocAsk [simplified sub_apply o_def] System_Bounded_allocAsk [simplified sub_apply o_def] System_Alloc_Client_Progress [simplified sub_apply o_def]) done text\progress (2), step 10 (final result!)\ lemma System_Progress: "System \ system_progress" apply (unfold system_progress_def) apply (cut_tac System_Alloc_Progress) apply auto apply (blast intro: LeadsTo_Trans System_Follows_allocGiv [THEN Follows_LeadsTo_pfixLe] System_Follows_ask [THEN Follows_LeadsTo]) done theorem System_correct: "System \ system_spec" apply (unfold system_spec_def) apply (blast intro: System_safety System_Progress) done text\Some obsolete lemmas\ lemma non_dummy_eq_o_funPair: "non_dummy = (% (g,a,r). (| giv = g, ask = a, rel = r |)) o (funPair giv (funPair ask rel))" apply (rule ext) apply (auto simp add: o_def non_dummy_def) done lemma preserves_non_dummy_eq: "(preserves non_dummy) = (preserves rel Int preserves ask Int preserves giv)" apply (simp add: non_dummy_eq_o_funPair) apply auto apply (drule_tac w1 = rel in subset_preserves_o [THEN [2] rev_subsetD]) apply (drule_tac [2] w1 = ask in subset_preserves_o [THEN [2] rev_subsetD]) apply (drule_tac [3] w1 = giv in subset_preserves_o [THEN [2] rev_subsetD]) apply (auto simp add: o_def) done text\Could go to Extend.ML\ lemma bij_fst_inv_inv_eq: "bij f \ fst (inv (%(x, u). inv f x) z) = f z" apply (rule fst_inv_equalityI) apply (rule_tac f = "%z. (f z, h z)" for h in surjI) apply (simp add: bij_is_inj inv_f_f) apply (simp add: bij_is_surj surj_f_inv_f) done end