(* Title: HOL/Library/Indicator_Function.thy Author: Johannes Hoelzl (TU Muenchen) *) section \Indicator Function\ theory Indicator_Function imports Complex_Main Disjoint_Sets begin definition "indicator S x = (if x \ S then 1 else 0)" text\Type constrained version\ abbreviation indicat_real :: "'a set \ 'a \ real" where "indicat_real S \ indicator S" lemma indicator_simps[simp]: "x \ S \ indicator S x = 1" "x \ S \ indicator S x = 0" unfolding indicator_def by auto lemma indicator_pos_le[intro, simp]: "(0::'a::linordered_semidom) \ indicator S x" and indicator_le_1[intro, simp]: "indicator S x \ (1::'a::linordered_semidom)" unfolding indicator_def by auto lemma indicator_abs_le_1: "\indicator S x\ \ (1::'a::linordered_idom)" unfolding indicator_def by auto lemma indicator_eq_0_iff: "indicator A x = (0::'a::zero_neq_one) \ x \ A" by (auto simp: indicator_def) lemma indicator_eq_1_iff: "indicator A x = (1::'a::zero_neq_one) \ x \ A" by (auto simp: indicator_def) lemma indicator_UNIV [simp]: "indicator UNIV = (\x. 1)" by auto lemma indicator_leI: "(x \ A \ y \ B) \ (indicator A x :: 'a::linordered_nonzero_semiring) \ indicator B y" by (auto simp: indicator_def) lemma split_indicator: "P (indicator S x) \ ((x \ S \ P 1) \ (x \ S \ P 0))" unfolding indicator_def by auto lemma split_indicator_asm: "P (indicator S x) \ (\ (x \ S \ \ P 1 \ x \ S \ \ P 0))" unfolding indicator_def by auto lemma indicator_inter_arith: "indicator (A \ B) x = indicator A x * (indicator B x::'a::semiring_1)" unfolding indicator_def by (auto simp: min_def max_def) lemma indicator_union_arith: "indicator (A \ B) x = indicator A x + indicator B x - indicator A x * (indicator B x :: 'a::ring_1)" unfolding indicator_def by (auto simp: min_def max_def) lemma indicator_inter_min: "indicator (A \ B) x = min (indicator A x) (indicator B x::'a::linordered_semidom)" and indicator_union_max: "indicator (A \ B) x = max (indicator A x) (indicator B x::'a::linordered_semidom)" unfolding indicator_def by (auto simp: min_def max_def) lemma indicator_disj_union: "A \ B = {} \ indicator (A \ B) x = (indicator A x + indicator B x :: 'a::linordered_semidom)" by (auto split: split_indicator) lemma indicator_compl: "indicator (- A) x = 1 - (indicator A x :: 'a::ring_1)" and indicator_diff: "indicator (A - B) x = indicator A x * (1 - indicator B x ::'a::ring_1)" unfolding indicator_def by (auto simp: min_def max_def) lemma indicator_times: "indicator (A \ B) x = indicator A (fst x) * (indicator B (snd x) :: 'a::semiring_1)" unfolding indicator_def by (cases x) auto lemma indicator_sum: "indicator (A <+> B) x = (case x of Inl x \ indicator A x | Inr x \ indicator B x)" unfolding indicator_def by (cases x) auto lemma indicator_image: "inj f \ indicator (f ` X) (f x) = (indicator X x::_::zero_neq_one)" by (auto simp: indicator_def inj_def) lemma indicator_vimage: "indicator (f -` A) x = indicator A (f x)" by (auto split: split_indicator) lemma (* FIXME unnamed!? *) fixes f :: "'a \ 'b::semiring_1" assumes "finite A" shows sum_mult_indicator[simp]: "(\x \ A. f x * indicator B x) = (\x \ A \ B. f x)" and sum_indicator_mult[simp]: "(\x \ A. indicator B x * f x) = (\x \ A \ B. f x)" unfolding indicator_def using assms by (auto intro!: sum.mono_neutral_cong_right split: if_split_asm) lemma sum_indicator_eq_card: assumes "finite A" shows "(\x \ A. indicator B x) = card (A Int B)" using sum_mult_indicator [OF assms, of "\x. 1::nat"] unfolding card_eq_sum by simp lemma sum_indicator_scaleR[simp]: "finite A \ (\x \ A. indicator (B x) (g x) *\<^sub>R f x) = (\x \ {x\A. g x \ B x}. f x :: 'a::real_vector)" by (auto intro!: sum.mono_neutral_cong_right split: if_split_asm simp: indicator_def) lemma LIMSEQ_indicator_incseq: assumes "incseq A" shows "(\i. indicator (A i) x :: 'a::{topological_space,one,zero}) \ indicator (\i. A i) x" proof (cases "\i. x \ A i") case True then obtain i where "x \ A i" by auto then have *: "\n. (indicator (A (n + i)) x :: 'a) = 1" "(indicator (\i. A i) x :: 'a) = 1" using incseqD[OF \incseq A\, of i "n + i" for n] \x \ A i\ by (auto simp: indicator_def) show ?thesis by (rule LIMSEQ_offset[of _ i]) (use * in simp) next case False then show ?thesis by (simp add: indicator_def) qed lemma LIMSEQ_indicator_UN: "(\k. indicator (\i indicator (\i. A i) x" proof - have "(\k. indicator (\i indicator (\k. \ik. \ii. A i)" by auto finally show ?thesis . qed lemma LIMSEQ_indicator_decseq: assumes "decseq A" shows "(\i. indicator (A i) x :: 'a::{topological_space,one,zero}) \ indicator (\i. A i) x" proof (cases "\i. x \ A i") case True then obtain i where "x \ A i" by auto then have *: "\n. (indicator (A (n + i)) x :: 'a) = 0" "(indicator (\i. A i) x :: 'a) = 0" using decseqD[OF \decseq A\, of i "n + i" for n] \x \ A i\ by (auto simp: indicator_def) show ?thesis by (rule LIMSEQ_offset[of _ i]) (use * in simp) next case False then show ?thesis by (simp add: indicator_def) qed lemma LIMSEQ_indicator_INT: "(\k. indicator (\i indicator (\i. A i) x" proof - have "(\k. indicator (\i indicator (\k. \ik. \ii. A i)" by auto finally show ?thesis . qed lemma indicator_add: "A \ B = {} \ (indicator A x::_::monoid_add) + indicator B x = indicator (A \ B) x" unfolding indicator_def by auto lemma of_real_indicator: "of_real (indicator A x) = indicator A x" by (simp split: split_indicator) lemma real_of_nat_indicator: "real (indicator A x :: nat) = indicator A x" by (simp split: split_indicator) lemma abs_indicator: "\indicator A x :: 'a::linordered_idom\ = indicator A x" by (simp split: split_indicator) lemma mult_indicator_subset: "A \ B \ indicator A x * indicator B x = (indicator A x :: 'a::comm_semiring_1)" by (auto split: split_indicator simp: fun_eq_iff) lemma indicator_sums: assumes "\i j. i \ j \ A i \ A j = {}" shows "(\i. indicator (A i) x::real) sums indicator (\i. A i) x" proof (cases "\i. x \ A i") case True then obtain i where i: "x \ A i" .. with assms have "(\i. indicator (A i) x::real) sums (\i\{i}. indicator (A i) x)" by (intro sums_finite) (auto split: split_indicator) also have "(\i\{i}. indicator (A i) x) = indicator (\i. A i) x" using i by (auto split: split_indicator) finally show ?thesis . next case False then show ?thesis by simp qed text \ The indicator function of the union of a disjoint family of sets is the sum over all the individual indicators. \ lemma indicator_UN_disjoint: "finite A \ disjoint_family_on f A \ indicator (UNION A f) x = (\y\A. indicator (f y) x)" by (induct A rule: finite_induct) (auto simp: disjoint_family_on_def indicator_def split: if_splits) end