(* Title: HOL/HOLCF/Cont.thy Author: Franz Regensburger Author: Brian Huffman *) section \Continuity and monotonicity\ theory Cont imports Pcpo begin text \ Now we change the default class! Form now on all untyped type variables are of default class po \ default_sort po subsection \Definitions\ definition monofun :: "('a \ 'b) \ bool" \ \monotonicity\ where "monofun f \ (\x y. x \ y \ f x \ f y)" definition cont :: "('a::cpo \ 'b::cpo) \ bool" where "cont f = (\Y. chain Y \ range (\i. f (Y i)) <<| f (\i. Y i))" lemma contI: "(\Y. chain Y \ range (\i. f (Y i)) <<| f (\i. Y i)) \ cont f" by (simp add: cont_def) lemma contE: "cont f \ chain Y \ range (\i. f (Y i)) <<| f (\i. Y i)" by (simp add: cont_def) lemma monofunI: "(\x y. x \ y \ f x \ f y) \ monofun f" by (simp add: monofun_def) lemma monofunE: "monofun f \ x \ y \ f x \ f y" by (simp add: monofun_def) subsection \Equivalence of alternate definition\ text \monotone functions map chains to chains\ lemma ch2ch_monofun: "monofun f \ chain Y \ chain (\i. f (Y i))" apply (rule chainI) apply (erule monofunE) apply (erule chainE) done text \monotone functions map upper bound to upper bounds\ lemma ub2ub_monofun: "monofun f \ range Y <| u \ range (\i. f (Y i)) <| f u" apply (rule ub_rangeI) apply (erule monofunE) apply (erule ub_rangeD) done text \a lemma about binary chains\ lemma binchain_cont: "cont f \ x \ y \ range (\i::nat. f (if i = 0 then x else y)) <<| f y" apply (subgoal_tac "f (\i::nat. if i = 0 then x else y) = f y") apply (erule subst) apply (erule contE) apply (erule bin_chain) apply (rule_tac f=f in arg_cong) apply (erule is_lub_bin_chain [THEN lub_eqI]) done text \continuity implies monotonicity\ lemma cont2mono: "cont f \ monofun f" apply (rule monofunI) apply (drule (1) binchain_cont) apply (drule_tac i=0 in is_lub_rangeD1) apply simp done lemmas cont2monofunE = cont2mono [THEN monofunE] lemmas ch2ch_cont = cont2mono [THEN ch2ch_monofun] text \continuity implies preservation of lubs\ lemma cont2contlubE: "cont f \ chain Y \ f (\i. Y i) = (\i. f (Y i))" apply (rule lub_eqI [symmetric]) apply (erule (1) contE) done lemma contI2: fixes f :: "'a::cpo \ 'b::cpo" assumes mono: "monofun f" assumes below: "\Y. \chain Y; chain (\i. f (Y i))\ \ f (\i. Y i) \ (\i. f (Y i))" shows "cont f" proof (rule contI) fix Y :: "nat \ 'a" assume Y: "chain Y" with mono have fY: "chain (\i. f (Y i))" by (rule ch2ch_monofun) have "(\i. f (Y i)) = f (\i. Y i)" apply (rule below_antisym) apply (rule lub_below [OF fY]) apply (rule monofunE [OF mono]) apply (rule is_ub_thelub [OF Y]) apply (rule below [OF Y fY]) done with fY show "range (\i. f (Y i)) <<| f (\i. Y i)" by (rule thelubE) qed subsection \Collection of continuity rules\ named_theorems cont2cont "continuity intro rule" subsection \Continuity of basic functions\ text \The identity function is continuous\ lemma cont_id [simp, cont2cont]: "cont (\x. x)" apply (rule contI) apply (erule cpo_lubI) done text \constant functions are continuous\ lemma cont_const [simp, cont2cont]: "cont (\x. c)" using is_lub_const by (rule contI) text \application of functions is continuous\ lemma cont_apply: fixes f :: "'a::cpo \ 'b::cpo \ 'c::cpo" and t :: "'a \ 'b" assumes 1: "cont (\x. t x)" assumes 2: "\x. cont (\y. f x y)" assumes 3: "\y. cont (\x. f x y)" shows "cont (\x. (f x) (t x))" proof (rule contI2 [OF monofunI]) fix x y :: "'a" assume "x \ y" then show "f x (t x) \ f y (t y)" by (auto intro: cont2monofunE [OF 1] cont2monofunE [OF 2] cont2monofunE [OF 3] below_trans) next fix Y :: "nat \ 'a" assume "chain Y" then show "f (\i. Y i) (t (\i. Y i)) \ (\i. f (Y i) (t (Y i)))" by (simp only: cont2contlubE [OF 1] ch2ch_cont [OF 1] cont2contlubE [OF 2] ch2ch_cont [OF 2] cont2contlubE [OF 3] ch2ch_cont [OF 3] diag_lub below_refl) qed lemma cont_compose: "cont c \ cont (\x. f x) \ cont (\x. c (f x))" by (rule cont_apply [OF _ _ cont_const]) text \Least upper bounds preserve continuity\ lemma cont2cont_lub [simp]: assumes chain: "\x. chain (\i. F i x)" and cont: "\i. cont (\x. F i x)" shows "cont (\x. \i. F i x)" apply (rule contI2) apply (simp add: monofunI cont2monofunE [OF cont] lub_mono chain) apply (simp add: cont2contlubE [OF cont]) apply (simp add: diag_lub ch2ch_cont [OF cont] chain) done text \if-then-else is continuous\ lemma cont_if [simp, cont2cont]: "cont f \ cont g \ cont (\x. if b then f x else g x)" by (induct b) simp_all subsection \Finite chains and flat pcpos\ text \Monotone functions map finite chains to finite chains.\ lemma monofun_finch2finch: "monofun f \ finite_chain Y \ finite_chain (\n. f (Y n))" by (force simp add: finite_chain_def ch2ch_monofun max_in_chain_def) text \The same holds for continuous functions.\ lemma cont_finch2finch: "cont f \ finite_chain Y \ finite_chain (\n. f (Y n))" by (rule cont2mono [THEN monofun_finch2finch]) text \All monotone functions with chain-finite domain are continuous.\ lemma chfindom_monofun2cont: "monofun f \ cont f" for f :: "'a::chfin \ 'b::cpo" apply (erule contI2) apply (frule chfin2finch) apply (clarsimp simp add: finite_chain_def) apply (subgoal_tac "max_in_chain i (\i. f (Y i))") apply (simp add: maxinch_is_thelub ch2ch_monofun) apply (force simp add: max_in_chain_def) done text \All strict functions with flat domain are continuous.\ lemma flatdom_strict2mono: "f \ = \ \ monofun f" for f :: "'a::flat \ 'b::pcpo" apply (rule monofunI) apply (drule ax_flat) apply auto done lemma flatdom_strict2cont: "f \ = \ \ cont f" for f :: "'a::flat \ 'b::pcpo" by (rule flatdom_strict2mono [THEN chfindom_monofun2cont]) text \All functions with discrete domain are continuous.\ lemma cont_discrete_cpo [simp, cont2cont]: "cont f" for f :: "'a::discrete_cpo \ 'b::cpo" apply (rule contI) apply (drule discrete_chain_const, clarify) apply (simp add: is_lub_const) done end