(* Title: HOL/Algebra/FiniteProduct.thy Author: Clemens Ballarin, started 19 November 2002 This file is largely based on HOL/Finite_Set.thy. *) theory FiniteProduct imports Group begin subsection \Product Operator for Commutative Monoids\ subsubsection \Inductive Definition of a Relation for Products over Sets\ text \Instantiation of locale \LC\ of theory \Finite_Set\ is not possible, because here we have explicit typing rules like \x \ carrier G\. We introduce an explicit argument for the domain \D\.\ inductive_set foldSetD :: "['a set, 'b \ 'a \ 'a, 'a] \ ('b set * 'a) set" for D :: "'a set" and f :: "'b \ 'a \ 'a" and e :: 'a where emptyI [intro]: "e \ D \ ({}, e) \ foldSetD D f e" | insertI [intro]: "\x \ A; f x y \ D; (A, y) \ foldSetD D f e\ \ (insert x A, f x y) \ foldSetD D f e" inductive_cases empty_foldSetDE [elim!]: "({}, x) \ foldSetD D f e" definition foldD :: "['a set, 'b \ 'a \ 'a, 'a, 'b set] \ 'a" where "foldD D f e A = (THE x. (A, x) \ foldSetD D f e)" lemma foldSetD_closed: "(A, z) \ foldSetD D f e \ z \ D" by (erule foldSetD.cases) auto lemma Diff1_foldSetD: "\(A - {x}, y) \ foldSetD D f e; x \ A; f x y \ D\ \ (A, f x y) \ foldSetD D f e" by (metis Diff_insert_absorb foldSetD.insertI mk_disjoint_insert) lemma foldSetD_imp_finite [simp]: "(A, x) \ foldSetD D f e \ finite A" by (induct set: foldSetD) auto lemma finite_imp_foldSetD: "\finite A; e \ D; \x y. \x \ A; y \ D\ \ f x y \ D\ \ \x. (A, x) \ foldSetD D f e" proof (induct set: finite) case empty then show ?case by auto next case (insert x F) then obtain y where y: "(F, y) \ foldSetD D f e" by auto with insert have "y \ D" by (auto dest: foldSetD_closed) with y and insert have "(insert x F, f x y) \ foldSetD D f e" by (intro foldSetD.intros) auto then show ?case .. qed lemma foldSetD_backwards: assumes "A \ {}" "(A, z) \ foldSetD D f e" shows "\x y. x \ A \ (A - { x }, y) \ foldSetD D f e \ z = f x y" using assms(2) by (cases) (simp add: assms(1), metis Diff_insert_absorb insertI1) subsubsection \Left-Commutative Operations\ locale LCD = fixes B :: "'b set" and D :: "'a set" and f :: "'b \ 'a \ 'a" (infixl "\" 70) assumes left_commute: "\x \ B; y \ B; z \ D\ \ x \ (y \ z) = y \ (x \ z)" and f_closed [simp, intro!]: "!!x y. \x \ B; y \ D\ \ f x y \ D" lemma (in LCD) foldSetD_closed [dest]: "(A, z) \ foldSetD D f e \ z \ D" by (erule foldSetD.cases) auto lemma (in LCD) Diff1_foldSetD: "\(A - {x}, y) \ foldSetD D f e; x \ A; A \ B\ \ (A, f x y) \ foldSetD D f e" by (meson Diff1_foldSetD f_closed local.foldSetD_closed subsetCE) lemma (in LCD) finite_imp_foldSetD: "\finite A; A \ B; e \ D\ \ \x. (A, x) \ foldSetD D f e" proof (induct set: finite) case empty then show ?case by auto next case (insert x F) then obtain y where y: "(F, y) \ foldSetD D f e" by auto with insert have "y \ D" by auto with y and insert have "(insert x F, f x y) \ foldSetD D f e" by (intro foldSetD.intros) auto then show ?case .. qed lemma (in LCD) foldSetD_determ_aux: assumes "e \ D" and A: "card A < n" "A \ B" "(A, x) \ foldSetD D f e" "(A, y) \ foldSetD D f e" shows "y = x" using A proof (induction n arbitrary: A x y) case 0 then show ?case by auto next case (Suc n) then consider "card A = n" | "card A < n" by linarith then show ?case proof cases case 1 show ?thesis using foldSetD.cases [OF \(A,x) \ foldSetD D (\) e\] proof cases case 1 then show ?thesis using \(A,y) \ foldSetD D (\) e\ by auto next case (2 x' A' y') note A' = this show ?thesis using foldSetD.cases [OF \(A,y) \ foldSetD D (\) e\] proof cases case 1 then show ?thesis using \(A,x) \ foldSetD D (\) e\ by auto next case (2 x'' A'' y'') note A'' = this show ?thesis proof (cases "x' = x''") case True show ?thesis proof (cases "y' = y''") case True then show ?thesis using A' A'' \x' = x''\ by (blast elim!: equalityE) next case False then show ?thesis using A' A'' \x' = x''\ by (metis \card A = n\ Suc.IH Suc.prems(2) card_insert_disjoint foldSetD_imp_finite insert_eq_iff insert_subset lessI) qed next case False then have *: "A' - {x''} = A'' - {x'}" "x'' \ A'" "x' \ A''" using A' A'' by fastforce+ then have "A' = insert x'' A'' - {x'}" using \x' \ A'\ by blast then have card: "card A' \ card A''" using A' A'' * by (metis card_Suc_Diff1 eq_refl foldSetD_imp_finite) obtain u where u: "(A' - {x''}, u) \ foldSetD D (\) e" using finite_imp_foldSetD [of "A' - {x''}"] A' Diff_insert \A \ B\ \e \ D\ by fastforce have "y' = f x'' u" using Diff1_foldSetD [OF u] \x'' \ A'\ \card A = n\ A' Suc.IH \A \ B\ by auto then have "(A'' - {x'}, u) \ foldSetD D f e" using "*"(1) u by auto then have "y'' = f x' u" using A'' by (metis * \card A = n\ A'(1) Diff1_foldSetD Suc.IH \A \ B\ card card_Suc_Diff1 card_insert_disjoint foldSetD_imp_finite insert_subset le_imp_less_Suc) then show ?thesis using A' A'' by (metis \A \ B\ \y' = x'' \ u\ insert_subset left_commute local.foldSetD_closed u) qed qed qed next case 2 with Suc show ?thesis by blast qed qed lemma (in LCD) foldSetD_determ: "\(A, x) \ foldSetD D f e; (A, y) \ foldSetD D f e; e \ D; A \ B\ \ y = x" by (blast intro: foldSetD_determ_aux [rule_format]) lemma (in LCD) foldD_equality: "\(A, y) \ foldSetD D f e; e \ D; A \ B\ \ foldD D f e A = y" by (unfold foldD_def) (blast intro: foldSetD_determ) lemma foldD_empty [simp]: "e \ D \ foldD D f e {} = e" by (unfold foldD_def) blast lemma (in LCD) foldD_insert_aux: "\x \ A; x \ B; e \ D; A \ B\ \ ((insert x A, v) \ foldSetD D f e) \ (\y. (A, y) \ foldSetD D f e \ v = f x y)" apply auto by (metis Diff_insert_absorb f_closed finite_Diff foldSetD.insertI foldSetD_determ foldSetD_imp_finite insert_subset local.finite_imp_foldSetD local.foldSetD_closed) lemma (in LCD) foldD_insert: assumes "finite A" "x \ A" "x \ B" "e \ D" "A \ B" shows "foldD D f e (insert x A) = f x (foldD D f e A)" proof - have "(THE v. \y. (A, y) \ foldSetD D (\) e \ v = x \ y) = x \ (THE y. (A, y) \ foldSetD D (\) e)" by (rule the_equality) (use assms foldD_def foldD_equality foldD_def finite_imp_foldSetD in \metis+\) then show ?thesis unfolding foldD_def using assms by (simp add: foldD_insert_aux) qed lemma (in LCD) foldD_closed [simp]: "\finite A; e \ D; A \ B\ \ foldD D f e A \ D" proof (induct set: finite) case empty then show ?case by simp next case insert then show ?case by (simp add: foldD_insert) qed lemma (in LCD) foldD_commute: "\finite A; x \ B; e \ D; A \ B\ \ f x (foldD D f e A) = foldD D f (f x e) A" by (induct set: finite) (auto simp add: left_commute foldD_insert) lemma Int_mono2: "\A \ C; B \ C\ \ A Int B \ C" by blast lemma (in LCD) foldD_nest_Un_Int: "\finite A; finite C; e \ D; A \ B; C \ B\ \ foldD D f (foldD D f e C) A = foldD D f (foldD D f e (A Int C)) (A Un C)" proof (induction set: finite) case (insert x F) then show ?case by (simp add: foldD_insert foldD_commute Int_insert_left insert_absorb Int_mono2) qed simp lemma (in LCD) foldD_nest_Un_disjoint: "\finite A; finite B; A Int B = {}; e \ D; A \ B; C \ B\ \ foldD D f e (A Un B) = foldD D f (foldD D f e B) A" by (simp add: foldD_nest_Un_Int) \ \Delete rules to do with \foldSetD\ relation.\ declare foldSetD_imp_finite [simp del] empty_foldSetDE [rule del] foldSetD.intros [rule del] declare (in LCD) foldSetD_closed [rule del] text \Commutative Monoids\ text \ We enter a more restrictive context, with \f :: 'a \ 'a \ 'a\ instead of \'b \ 'a \ 'a\. \ locale ACeD = fixes D :: "'a set" and f :: "'a \ 'a \ 'a" (infixl "\" 70) and e :: 'a assumes ident [simp]: "x \ D \ x \ e = x" and commute: "\x \ D; y \ D\ \ x \ y = y \ x" and assoc: "\x \ D; y \ D; z \ D\ \ (x \ y) \ z = x \ (y \ z)" and e_closed [simp]: "e \ D" and f_closed [simp]: "\x \ D; y \ D\ \ x \ y \ D" lemma (in ACeD) left_commute: "\x \ D; y \ D; z \ D\ \ x \ (y \ z) = y \ (x \ z)" proof - assume D: "x \ D" "y \ D" "z \ D" then have "x \ (y \ z) = (y \ z) \ x" by (simp add: commute) also from D have "... = y \ (z \ x)" by (simp add: assoc) also from D have "z \ x = x \ z" by (simp add: commute) finally show ?thesis . qed lemmas (in ACeD) AC = assoc commute left_commute lemma (in ACeD) left_ident [simp]: "x \ D \ e \ x = x" proof - assume "x \ D" then have "x \ e = x" by (rule ident) with \x \ D\ show ?thesis by (simp add: commute) qed lemma (in ACeD) foldD_Un_Int: "\finite A; finite B; A \ D; B \ D\ \ foldD D f e A \ foldD D f e B = foldD D f e (A Un B) \ foldD D f e (A Int B)" proof (induction set: finite) case empty then show ?case by(simp add: left_commute LCD.foldD_closed [OF LCD.intro [of D]]) next case (insert x F) then show ?case by(simp add: AC insert_absorb Int_insert_left Int_mono2 LCD.foldD_insert [OF LCD.intro [of D]] LCD.foldD_closed [OF LCD.intro [of D]]) qed lemma (in ACeD) foldD_Un_disjoint: "\finite A; finite B; A Int B = {}; A \ D; B \ D\ \ foldD D f e (A Un B) = foldD D f e A \ foldD D f e B" by (simp add: foldD_Un_Int left_commute LCD.foldD_closed [OF LCD.intro [of D]]) subsubsection \Products over Finite Sets\ definition finprod :: "[('b, 'm) monoid_scheme, 'a \ 'b, 'a set] \ 'b" where "finprod G f A = (if finite A then foldD (carrier G) (mult G \ f) \\<^bsub>G\<^esub> A else \\<^bsub>G\<^esub>)" syntax "_finprod" :: "index \ idt \ 'a set \ 'b \ 'b" ("(3\__\_. _)" [1000, 0, 51, 10] 10) translations "\\<^bsub>G\<^esub>i\A. b" \ "CONST finprod G (%i. b) A" \ \Beware of argument permutation!\ lemma (in comm_monoid) finprod_empty [simp]: "finprod G f {} = \" by (simp add: finprod_def) lemma (in comm_monoid) finprod_infinite[simp]: "\ finite A \ finprod G f A = \" by (simp add: finprod_def) declare funcsetI [intro] funcset_mem [dest] context comm_monoid begin lemma finprod_insert [simp]: assumes "finite F" "a \ F" "f \ F \ carrier G" "f a \ carrier G" shows "finprod G f (insert a F) = f a \ finprod G f F" proof - have "finprod G f (insert a F) = foldD (carrier G) ((\) \ f) \ (insert a F)" by (simp add: finprod_def assms) also have "... = ((\) \ f) a (foldD (carrier G) ((\) \ f) \ F)" by (rule LCD.foldD_insert [OF LCD.intro [of "insert a F"]]) (use assms in \auto simp: m_lcomm Pi_iff\) also have "... = f a \ finprod G f F" using \finite F\ by (auto simp add: finprod_def) finally show ?thesis . qed lemma finprod_one_eqI: "(\x. x \ A \ f x = \) \ finprod G f A = \" proof (induct A rule: infinite_finite_induct) case empty show ?case by simp next case (insert a A) have "(\i. \) \ A \ carrier G" by auto with insert show ?case by simp qed simp lemma finprod_one [simp]: "(\i\A. \) = \" by (simp add: finprod_one_eqI) lemma finprod_closed [simp]: fixes A assumes f: "f \ A \ carrier G" shows "finprod G f A \ carrier G" using f proof (induct A rule: infinite_finite_induct) case empty show ?case by simp next case (insert a A) then have a: "f a \ carrier G" by fast from insert have A: "f \ A \ carrier G" by fast from insert A a show ?case by simp qed simp lemma funcset_Int_left [simp, intro]: "\f \ A \ C; f \ B \ C\ \ f \ A Int B \ C" by fast lemma funcset_Un_left [iff]: "(f \ A Un B \ C) = (f \ A \ C \ f \ B \ C)" by fast lemma finprod_Un_Int: "\finite A; finite B; g \ A \ carrier G; g \ B \ carrier G\ \ finprod G g (A Un B) \ finprod G g (A Int B) = finprod G g A \ finprod G g B" \ \The reversed orientation looks more natural, but LOOPS as a simprule!\ proof (induct set: finite) case empty then show ?case by simp next case (insert a A) then have a: "g a \ carrier G" by fast from insert have A: "g \ A \ carrier G" by fast from insert A a show ?case by (simp add: m_ac Int_insert_left insert_absorb Int_mono2) qed lemma finprod_Un_disjoint: "\finite A; finite B; A Int B = {}; g \ A \ carrier G; g \ B \ carrier G\ \ finprod G g (A Un B) = finprod G g A \ finprod G g B" by (metis Pi_split_domain finprod_Un_Int finprod_closed finprod_empty r_one) lemma finprod_multf [simp]: "\f \ A \ carrier G; g \ A \ carrier G\ \ finprod G (\x. f x \ g x) A = (finprod G f A \ finprod G g A)" proof (induct A rule: infinite_finite_induct) case empty show ?case by simp next case (insert a A) then have fA: "f \ A \ carrier G" by fast from insert have fa: "f a \ carrier G" by fast from insert have gA: "g \ A \ carrier G" by fast from insert have ga: "g a \ carrier G" by fast from insert have fgA: "(%x. f x \ g x) \ A \ carrier G" by (simp add: Pi_def) show ?case by (simp add: insert fA fa gA ga fgA m_ac) qed simp lemma finprod_cong': "\A = B; g \ B \ carrier G; !!i. i \ B \ f i = g i\ \ finprod G f A = finprod G g B" proof - assume prems: "A = B" "g \ B \ carrier G" "!!i. i \ B \ f i = g i" show ?thesis proof (cases "finite B") case True then have "!!A. \A = B; g \ B \ carrier G; !!i. i \ B \ f i = g i\ \ finprod G f A = finprod G g B" proof induct case empty thus ?case by simp next case (insert x B) then have "finprod G f A = finprod G f (insert x B)" by simp also from insert have "... = f x \ finprod G f B" proof (intro finprod_insert) show "finite B" by fact next show "x \ B" by fact next assume "x \ B" "!!i. i \ insert x B \ f i = g i" "g \ insert x B \ carrier G" thus "f \ B \ carrier G" by fastforce next assume "x \ B" "!!i. i \ insert x B \ f i = g i" "g \ insert x B \ carrier G" thus "f x \ carrier G" by fastforce qed also from insert have "... = g x \ finprod G g B" by fastforce also from insert have "... = finprod G g (insert x B)" by (intro finprod_insert [THEN sym]) auto finally show ?case . qed with prems show ?thesis by simp next case False with prems show ?thesis by simp qed qed lemma finprod_cong: "\A = B; f \ B \ carrier G = True; \i. i \ B =simp=> f i = g i\ \ finprod G f A = finprod G g B" (* This order of prems is slightly faster (3%) than the last two swapped. *) by (rule finprod_cong') (auto simp add: simp_implies_def) text \Usually, if this rule causes a failed congruence proof error, the reason is that the premise \g \ B \ carrier G\ cannot be shown. Adding @{thm [source] Pi_def} to the simpset is often useful. For this reason, @{thm [source] finprod_cong} is not added to the simpset by default. \ end declare funcsetI [rule del] funcset_mem [rule del] context comm_monoid begin lemma finprod_0 [simp]: "f \ {0::nat} \ carrier G \ finprod G f {..0} = f 0" by (simp add: Pi_def) lemma finprod_0': "f \ {..n} \ carrier G \ (f 0) \ finprod G f {Suc 0..n} = finprod G f {..n}" proof - assume A: "f \ {.. n} \ carrier G" hence "(f 0) \ finprod G f {Suc 0..n} = finprod G f {..0} \ finprod G f {Suc 0..n}" using finprod_0[of f] by (simp add: funcset_mem) also have " ... = finprod G f ({..0} \ {Suc 0..n})" using finprod_Un_disjoint[of "{..0}" "{Suc 0..n}" f] A by (simp add: funcset_mem) also have " ... = finprod G f {..n}" by (simp add: atLeastAtMost_insertL atMost_atLeast0) finally show ?thesis . qed lemma finprod_Suc [simp]: "f \ {..Suc n} \ carrier G \ finprod G f {..Suc n} = (f (Suc n) \ finprod G f {..n})" by (simp add: Pi_def atMost_Suc) lemma finprod_Suc2: "f \ {..Suc n} \ carrier G \ finprod G f {..Suc n} = (finprod G (%i. f (Suc i)) {..n} \ f 0)" proof (induct n) case 0 thus ?case by (simp add: Pi_def) next case Suc thus ?case by (simp add: m_assoc Pi_def) qed lemma finprod_Suc3: assumes "f \ {..n :: nat} \ carrier G" shows "finprod G f {.. n} = (f n) \ finprod G f {..< n}" proof (cases "n = 0") case True thus ?thesis using assms atMost_Suc by simp next case False then obtain k where "n = Suc k" using not0_implies_Suc by blast thus ?thesis using finprod_Suc[of f k] assms atMost_Suc lessThan_Suc_atMost by simp qed (* The following two were contributed by Jeremy Avigad. *) lemma finprod_reindex: "f \ (h ` A) \ carrier G \ inj_on h A \ finprod G f (h ` A) = finprod G (\x. f (h x)) A" proof (induct A rule: infinite_finite_induct) case (infinite A) hence "\ finite (h ` A)" using finite_imageD by blast with \\ finite A\ show ?case by simp qed (auto simp add: Pi_def) lemma finprod_const: assumes a [simp]: "a \ carrier G" shows "finprod G (\x. a) A = a [^] card A" proof (induct A rule: infinite_finite_induct) case (insert b A) show ?case proof (subst finprod_insert[OF insert(1-2)]) show "a \ (\x\A. a) = a [^] card (insert b A)" by (insert insert, auto, subst m_comm, auto) qed auto qed auto (* The following lemma was contributed by Jesus Aransay. *) lemma finprod_singleton: assumes i_in_A: "i \ A" and fin_A: "finite A" and f_Pi: "f \ A \ carrier G" shows "(\j\A. if i = j then f j else \) = f i" using i_in_A finprod_insert [of "A - {i}" i "(\j. if i = j then f j else \)"] fin_A f_Pi finprod_one [of "A - {i}"] finprod_cong [of "A - {i}" "A - {i}" "(\j. if i = j then f j else \)" "(\i. \)"] unfolding Pi_def simp_implies_def by (force simp add: insert_absorb) end (* Jeremy Avigad. This should be generalized to arbitrary groups, not just commutative ones, using Lagrange's theorem. *) lemma (in comm_group) power_order_eq_one: assumes fin [simp]: "finite (carrier G)" and a [simp]: "a \ carrier G" shows "a [^] card(carrier G) = one G" proof - have "(\x\carrier G. x) = (\x\carrier G. a \ x)" by (subst (2) finprod_reindex [symmetric], auto simp add: Pi_def inj_on_cmult surj_const_mult) also have "\ = (\x\carrier G. a) \ (\x\carrier G. x)" by (auto simp add: finprod_multf Pi_def) also have "(\x\carrier G. a) = a [^] card(carrier G)" by (auto simp add: finprod_const) finally show ?thesis by auto qed lemma (in comm_monoid) finprod_UN_disjoint: assumes "finite I" "\i. i \ I \ finite (A i)" "pairwise (\i j. disjnt (A i) (A j)) I" "\i x. i \ I \ x \ A i \ g x \ carrier G" shows "finprod G g (UNION I A) = finprod G (\i. finprod G g (A i)) I" using assms proof (induction set: finite) case empty then show ?case by force next case (insert i I) then show ?case unfolding pairwise_def disjnt_def apply clarsimp apply (subst finprod_Un_disjoint) apply (fastforce intro!: funcsetI finprod_closed)+ done qed lemma (in comm_monoid) finprod_Union_disjoint: "\finite C; \A. A \ C \ finite A \ (\x\A. f x \ carrier G); pairwise disjnt C\ \ finprod G f (\C) = finprod G (finprod G f) C" by (frule finprod_UN_disjoint [of C id f]) auto end