/****************************************************************************************[Solver.C] MiniSat -- Copyright (c) 2003-2005, Niklas Een, Niklas Sorensson Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions: The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software. THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. **************************************************************************************************/ #include "Solver.h" #include "Sort.h" #include #define CC_MINIMIZATION //================================================================================================= // Helper functions: void removeWatch(vec& ws, Clause* elem) { if (ws.size() == 0) return; // (skip lists that are already cleared) int j = 0; for (; ws[j] != elem ; j++) assert(j < ws.size()); for (; j < ws.size()-1; j++) ws[j] = ws[j+1]; ws.pop(); } //================================================================================================= // Operations on clauses: /*_________________________________________________________________________________________________ | | newClause : (ps : const vec&) (learnt : bool) (id : ClauseId) -> [void] | | Description: | Allocate and add a new clause to the SAT solvers clause database. If a conflict is detected, | the 'ok' flag is cleared and the solver is in an unusable state (must be disposed). | | Input: | ps - The new clause as a vector of literals. | learnt - Is the clause a learnt clause? For learnt clauses, 'ps[0]' is assumed to be the | asserting literal. An appropriate 'enqueue()' operation will be performed on this | literal. One of the watches will always be on this literal, the other will be set to | the literal with the highest decision level. | id - If logging proof, learnt clauses should be given an ID by caller. | | Effect: | Activity heuristics are updated. |________________________________________________________________________________________________@*/ void Solver::newClause(const vec& ps_, bool learnt, ClauseId id) { assert(learnt || id == ClauseId_NULL); if (!ok) return; vec qs; if (!learnt){ assert(decisionLevel() == 0); ps_.copyTo(qs); // Make a copy of the input vector. // Remove duplicates: sortUnique(qs); // Check if clause is satisfied: for (int i = 0; i < qs.size()-1; i++){ if (qs[i] == ~qs[i+1]) { if (proof != NULL) proof->incRootCount(); return;} } for (int i = 0; i < qs.size(); i++){ if (value(qs[i]) == l_True) { if (proof != NULL) proof->incRootCount(); return;} } // Remove false literals: int i, j; if (proof != NULL) proof->beginChain(proof->addRoot(qs)); for (i = j = 0; i < qs.size(); i++) if (value(qs[i]) != l_False) qs[j++] = qs[i]; else if (proof != NULL) proof->resolve(unit_id[var(qs[i])], var(qs[i])); qs.shrink(i - j); if (proof != NULL) id = proof->endChain(); } const vec& ps = learnt ? ps_ : qs; // 'ps' is now the (possibly) reduced vector of literals. if (ps.size() == 0){ ok = false; }else if (ps.size() == 1){ // NOTE: If enqueue takes place at root level, // the assignment will be lost in incremental use (it doesn't seem to hurt much though). if (id != ClauseId_NULL) unit_id[var(ps[0])] = (sign(ps[0])) ? -id : id; //HA: sign info if (!enqueue(ps[0])) ok = false; }else{ // Allocate clause: Clause* c = Clause_new(learnt, ps, id); if (learnt){ // Put the second watch on the literal with highest decision level: int max_i = 1; int max = level[var(ps[1])]; for (int i = 2; i < ps.size(); i++) if (level[var(ps[i])] > max) max = level[var(ps[i])], max_i = i; (*c)[1] = ps[max_i]; (*c)[max_i] = ps[1]; // Bumping: claBumpActivity(c); // (newly learnt clauses should be considered active) // Enqueue asserting literal: check(enqueue((*c)[0], c)); // Store clause: watches[index(~(*c)[0])].push(c); watches[index(~(*c)[1])].push(c); learnts.push(c); stats.learnts_literals += c->size(); }else{ // Store clause: watches[index(~(*c)[0])].push(c); watches[index(~(*c)[1])].push(c); clauses.push(c); stats.clauses_literals += c->size(); } } } // Disposes a clauses and removes it from watcher lists. NOTE! Low-level; does NOT change the 'clauses' and 'learnts' vector. // void Solver::remove(Clause* c, bool just_dealloc) { if (!just_dealloc){ removeWatch(watches[index(~(*c)[0])], c), removeWatch(watches[index(~(*c)[1])], c); if (c->learnt()) stats.learnts_literals -= c->size(); else stats.clauses_literals -= c->size(); if (proof != NULL) proof->deleted(c->id()); } xfree(c); } // Can assume everything has been propagated! (esp. the first two literals are != l_False, unless // the clause is binary and satisfied, in which case the first literal is true) // Returns True if clause is satisfied (will be removed), False otherwise. // bool Solver::simplify(Clause* c) const { assert(decisionLevel() == 0); for (int i = 0; i < c->size(); i++){ if (value((*c)[i]) == l_True) return true; } return false; } //================================================================================================= // Minor methods: // Creates a new SAT variable in the solver. If 'decision_var' is cleared, variable will not be // used as a decision variable (NOTE! This has effects on the meaning of a SATISFIABLE result). // Var Solver::newVar() { int index; index = nVars(); watches .push(); // (list for positive literal) watches .push(); // (list for negative literal) reason .push(NULL); sreason .push(true); // dummy value assigns .push(toInt(l_Undef)); level .push(-1); trail_pos .push(-1); activity .push(0); order .newVar(); analyze_seen.push(0); if (proof != NULL) unit_id.push(ClauseId_NULL); return index; } // Returns FALSE if immediate conflict. bool Solver::assume(Lit p) { trail_lim.push(trail.size()); return enqueue(p); } // Revert to the state at given level. void Solver::cancelUntil(int level) { if (decisionLevel() > level){ for (int c = trail.size()-1; c >= trail_lim[level]; c--){ Var x = var(trail[c]); assigns[x] = toInt(l_Undef); reason [x] = NULL; sreason[x] = true; // dummy order.undo(x); } trail.shrink(trail.size() - trail_lim[level]); trail_lim.shrink(trail_lim.size() - level); qhead = trail.size(); } } //================================================================================================= // Major methods: /*_________________________________________________________________________________________________ | | analyze : (confl : Clause*) (out_learnt : vec&) (out_btlevel : int&) -> [void] | | Description: | Analyze conflict and produce a reason clause ('out_learnt') and a backtracking level | ('out_btlevel'). | | Pre-conditions: | * 'out_learnt' is assumed to be cleared. | * Current decision level must be greater than root level. | | Post-conditions: | * 'out_learnt[0]' is the asserting literal at level 'out_btlevel'. | * If performing proof-logging, the last derived clause in the proof is the reason clause. |________________________________________________________________________________________________@*/ class lastToFirst_lt { // Helper class to 'analyze' -- order literals from last to first occurance in 'trail[]'. const vec& trail_pos; public: lastToFirst_lt(const vec& t) : trail_pos(t) {} bool operator () (Lit p, Lit q) { return trail_pos[var(p)] > trail_pos[var(q)]; } }; void Solver::analyze(Clause* confl, vec& out_learnt, int& out_btlevel) { vec& seen = analyze_seen; int pathC = 0; Lit p = lit_Undef; bool sconfl; // Generate conflict clause: // if (proof != NULL) proof->beginChain(confl->id()); out_learnt.push(); // (leave room for the asserting literal) out_btlevel = 0; int index = trail.size()-1; for(;;){ assert(confl != NULL); // (otherwise should be UIP) Clause& c = *confl; if (c.learnt()) claBumpActivity(&c); for (int j = (p == lit_Undef) ? 0 : 1; j < c.size(); j++){ Lit q = c[j]; if (!seen[var(q)]){ if (level[var(q)] > 0){ varBumpActivity(q); seen[var(q)] = 1; if (level[var(q)] == decisionLevel()) pathC++; else{ out_learnt.push(q); out_btlevel = max(out_btlevel, level[var(q)]); } }else if (proof != NULL) proof->resolve(unit_id[var(q)], var(q)); } } // Select next clause to look at: while (!seen[var(trail[index--])]); p = trail[index+1]; confl = reason[var(p)]; sconfl = sreason[var(p)]; seen[var(p)] = 0; pathC--; if (pathC == 0) break; if (proof != NULL) //HA: pass -id if pivot literal is negated in the passed clause proof->resolve(sconfl ? (confl->id())*(-1) : confl->id(), var(p)); } out_learnt[0] = ~p; // Conflict clause minimization: // #ifdef CC_MINIMIZATION int i, j; if (expensive_ccmin){ // Simplify conflict clause (a lot): // uint min_level = 0; for (i = 1; i < out_learnt.size(); i++) min_level |= 1 << (level[var(out_learnt[i])] & 31); // (maintain an abstraction of levels involved in conflict) analyze_toclear.clear(); for (i = j = 1; i < out_learnt.size(); i++) if (reason[var(out_learnt[i])] == NULL || !analyze_removable(out_learnt[i], min_level)) out_learnt[j++] = out_learnt[i]; }else{ // Simplify conflict clause (a little): // analyze_toclear.clear(); for (i = j = 1; i < out_learnt.size(); i++){ Clause* r = reason[var(out_learnt[i])]; if (r == NULL) out_learnt[j++] = out_learnt[i]; else{ Clause& c = *r; for (int k = 1; k < c.size(); k++) if (!seen[var(c[k])] && level[var(c[k])] != 0){ out_learnt[j++] = out_learnt[i]; goto Keep; } analyze_toclear.push(out_learnt[i]); Keep:; } } } #else int i = 0, j = 0; #endif // Finilize proof logging with conflict clause minimization steps: // if (proof != NULL){ sort(analyze_toclear, lastToFirst_lt(trail_pos)); for (int k = 0; k < analyze_toclear.size(); k++){ Var v = var(analyze_toclear[k]); assert(level[v] > 0); Clause& c = *reason[v]; proof->resolve(sreason[v] ? -1*(c.id()) : c.id(), v); //HA: -id if v&1 in c for (int k = 1; k < c.size(); k++) if (level[var(c[k])] == 0) proof->resolve(unit_id[var(c[k])], var(c[k])); } proof->endChain(); } // Clean up: // for (int j = 0; j < out_learnt.size() ; j++) seen[var(out_learnt [j])] = 0; for (int j = 0; j < analyze_toclear.size(); j++) seen[var(analyze_toclear[j])] = 0; // ('seen[]' is now cleared) stats.max_literals += out_learnt.size(); out_learnt.shrink(i - j); stats.tot_literals += out_learnt.size(); } // Check if 'p' can be removed. 'min_level' is used to abort early if visiting literals at a level that cannot be removed. // bool Solver::analyze_removable(Lit p, uint min_level) { assert(reason[var(p)] != NULL); analyze_stack.clear(); analyze_stack.push(p); int top = analyze_toclear.size(); while (analyze_stack.size() > 0){ assert(reason[var(analyze_stack.last())] != NULL); Clause& c = *reason[var(analyze_stack.last())]; analyze_stack.pop(); for (int i = 1; i < c.size(); i++){ Lit p = c[i]; if (!analyze_seen[var(p)] && level[var(p)] != 0){ if (reason[var(p)] != NULL && ((1 << (level[var(p)] & 31)) & min_level) != 0){ analyze_seen[var(p)] = 1; analyze_stack.push(p); analyze_toclear.push(p); }else{ for (int j = top; j < analyze_toclear.size(); j++) analyze_seen[var(analyze_toclear[j])] = 0; analyze_toclear.shrink(analyze_toclear.size() - top); return false; } } } } analyze_toclear.push(p); return true; } /*_________________________________________________________________________________________________ | | analyzeFinal : (confl : Clause*) (skip_first : bool) -> [void] | | Description: | Specialized analysis procedure to express the final conflict in terms of assumptions. | 'root_level' is allowed to point beyond end of trace (useful if called after conflict while | making assumptions). If 'skip_first' is TRUE, the first literal of 'confl' is ignored (needed | if conflict arose before search even started). |________________________________________________________________________________________________@*/ void Solver::analyzeFinal(Clause* confl, bool skip_first) { // -- NOTE! This code is relatively untested. Please report bugs! conflict.clear(); if (root_level == 0){ if (proof != NULL) conflict_id = proof->last(); return; } vec& seen = analyze_seen; if (proof != NULL) proof->beginChain(confl->id()); for (int i = skip_first ? 1 : 0; i < confl->size(); i++){ Var x = var((*confl)[i]); if (level[x] > 0) seen[x] = 1; else if (proof != NULL) proof->resolve(unit_id[x], x); } int start = (root_level >= trail_lim.size()) ? trail.size()-1 : trail_lim[root_level]; for (int i = start; i >= trail_lim[0]; i--){ Var x = var(trail[i]); if (seen[x]){ Clause* r = reason[x]; if (r == NULL){ assert(level[x] > 0); conflict.push(~trail[i]); }else{ Clause& c = *r; if (proof != NULL) //HA: pass -id if pivot is negated in c proof->resolve(sreason[x] ? -1*(c.id()) : c.id(), x); for (int j = 1; j < c.size(); j++) if (level[var(c[j])] > 0) seen[var(c[j])] = 1; else if (proof != NULL) proof->resolve(unit_id[var(c[j])], var(c[j])); } seen[x] = 0; } } if (proof != NULL) conflict_id = proof->endChain(); } /*_________________________________________________________________________________________________ | | enqueue : (p : Lit) (from : Clause*) -> [bool] | | Description: | Puts a new fact on the propagation queue as well as immediately updating the variable's value. | Should a conflict arise, FALSE is returned. | | Input: | p - The fact to enqueue | from - [Optional] Fact propagated from this (currently) unit clause. Stored in 'reason[]'. | Default value is NULL (no reason). | | Output: | TRUE if fact was enqueued without conflict, FALSE otherwise. |________________________________________________________________________________________________@*/ bool Solver::enqueue(Lit p, Clause* from) { if (value(p) != l_Undef) return value(p) != l_False; else{ Var x = var(p); assigns [x] = toInt(lbool(!sign(p))); level [x] = decisionLevel(); trail_pos[x] = trail.size(); reason [x] = from; sreason [x] = sign(p); trail.push(p); return true; } } /*_________________________________________________________________________________________________ | | propagate : [void] -> [Clause*] | | Description: | Propagates all enqueued facts. If a conflict arises, the conflicting clause is returned, | otherwise NULL. NOTE! This method has been optimized for speed rather than readability. | | Post-conditions: | * The propagation queue is empty, even if there was a conflict. |________________________________________________________________________________________________@*/ Clause* Solver::propagate() { Clause* confl = NULL; while (qhead < trail.size()){ stats.propagations++; simpDB_props--; Lit p = trail[qhead++]; // 'p' is enqueued fact to propagate. vec& ws = watches[index(p)]; Clause** i,** j,** end; bool sconfl; for (i = j = (Clause**)ws, end = i + ws.size(); i != end;){ Clause& c = **i; i++; // Make sure the false literal is data[1]: Lit false_lit = ~p; if (c[0] == false_lit) c[0] = c[1], c[1] = false_lit; assert(c[1] == false_lit); // If 0th watch is true, then clause is already satisfied. Lit first = c[0]; sconfl = sign(first); lbool val = value(first); if (val == l_True){ *j++ = &c; }else{ // Look for new watch: for (int k = 2; k < c.size(); k++) if (value(c[k]) != l_False){ c[1] = c[k]; c[k] = false_lit; watches[index(~c[1])].push(&c); goto FoundWatch; } // Did not find watch -- clause is unit under assignment: if (decisionLevel() == 0 && proof != NULL){ // Log the production of this unit clause: proof->beginChain(c.id()); for (int k = 1; k < c.size(); k++) proof->resolve(unit_id[var(c[k])], var(c[k])); ClauseId id = proof->endChain(); assert(unit_id[var(first)] == ClauseId_NULL || value(first) == l_False); // (if variable already has 'id', it must be with the other polarity and we should have derived the empty clause here) if (value(first) != l_False) unit_id[var(first)] = sconfl ? -id : id; //HA: sign info else{ // Empty clause derived: proof->beginChain(unit_id[var(first)]); proof->resolve((unit_id[var(first)]>=0)? -id: id, var(first)); //HA: sign proof->endChain(); } } *j++ = &c; if (!enqueue(first, &c)){ if (decisionLevel() == 0) ok = false; confl = &c; qhead = trail.size(); // Copy the remaining watches: while (i < end) *j++ = *i++; } FoundWatch:; } } ws.shrink(i - j); } return confl; } /*_________________________________________________________________________________________________ | | reduceDB : () -> [void] | | Description: | Remove half of the learnt clauses, minus the clauses locked by the current assignment. Locked | clauses are clauses that are reason to some assignment. Binary clauses are never removed. |________________________________________________________________________________________________@*/ struct reduceDB_lt { bool operator () (Clause* x, Clause* y) { return x->size() > 2 && (y->size() == 2 || x->activity() < y->activity()); } }; void Solver::reduceDB() { int i, j; double extra_lim = cla_inc / learnts.size(); // Remove any clause below this activity sort(learnts, reduceDB_lt()); for (i = j = 0; i < learnts.size() / 2; i++){ if (learnts[i]->size() > 2 && !locked(learnts[i])) remove(learnts[i]); else learnts[j++] = learnts[i]; } for (; i < learnts.size(); i++){ if (learnts[i]->size() > 2 && !locked(learnts[i]) && learnts[i]->activity() < extra_lim) remove(learnts[i]); else learnts[j++] = learnts[i]; } learnts.shrink(i - j); } /*_________________________________________________________________________________________________ | | simplifyDB : [void] -> [bool] | | Description: | Simplify the clause database according to the current top-level assigment. Currently, the only | thing done here is the removal of satisfied clauses, but more things can be put here. |________________________________________________________________________________________________@*/ void Solver::simplifyDB() { if (!ok) return; // GUARD (public method) assert(decisionLevel() == 0); if (propagate() != NULL){ ok = false; return; } if (nAssigns() == simpDB_assigns || simpDB_props > 0) // (nothing has changed or preformed a simplification too recently) return; // Clear watcher lists: for (int i = simpDB_assigns; i < nAssigns(); i++){ Lit p = trail[i]; watches[index( p)].clear(true); watches[index(~p)].clear(true); } // Remove satisfied clauses: for (int type = 0; type < 2; type++){ vec& cs = type ? learnts : clauses; int j = 0; for (int i = 0; i < cs.size(); i++){ if (!locked(cs[i]) && simplify(cs[i])) remove(cs[i]); else cs[j++] = cs[i]; } cs.shrink(cs.size()-j); } simpDB_assigns = nAssigns(); simpDB_props = stats.clauses_literals + stats.learnts_literals; // (shouldn't depend on 'stats' really, but it will do for now) } /*_________________________________________________________________________________________________ | | search : (nof_conflicts : int) (nof_learnts : int) (params : const SearchParams&) -> [lbool] | | Description: | Search for a model the specified number of conflicts, keeping the number of learnt clauses | below the provided limit. NOTE! Use negative value for 'nof_conflicts' or 'nof_learnts' to | indicate infinity. | | Output: | 'l_True' if a partial assigment that is consistent with respect to the clauseset is found. If | all variables are decision variables, this means that the clause set is satisfiable. 'l_False' | if the clause set is unsatisfiable. 'l_Undef' if the bound on number of conflicts is reached. |________________________________________________________________________________________________@*/ lbool Solver::search(int nof_conflicts, int nof_learnts, const SearchParams& params) { if (!ok) return l_False; // GUARD (public method) assert(root_level == decisionLevel()); stats.starts++; int conflictC = 0; var_decay = 1 / params.var_decay; cla_decay = 1 / params.clause_decay; model.clear(); for (;;){ Clause* confl = propagate(); if (confl != NULL){ // CONFLICT stats.conflicts++; conflictC++; vec learnt_clause; int backtrack_level; if (decisionLevel() == root_level){ // Contradiction found: analyzeFinal(confl); return l_False; } analyze(confl, learnt_clause, backtrack_level); cancelUntil(max(backtrack_level, root_level)); newClause(learnt_clause, true, (proof != NULL) ? proof->last() : ClauseId_NULL); if (learnt_clause.size() == 1) level[var(learnt_clause[0])] = 0; // (this is ugly (but needed for 'analyzeFinal()') -- in future versions, we will backtrack past the 'root_level' and redo the assumptions) varDecayActivity(); claDecayActivity(); }else{ // NO CONFLICT if (nof_conflicts >= 0 && conflictC >= nof_conflicts){ // Reached bound on number of conflicts: progress_estimate = progressEstimate(); cancelUntil(root_level); return l_Undef; } if (decisionLevel() == 0) // Simplify the set of problem clauses: simplifyDB(), assert(ok); if (nof_learnts >= 0 && learnts.size()-nAssigns() >= nof_learnts) // Reduce the set of learnt clauses: reduceDB(); // New variable decision: stats.decisions++; Var next = order.select(params.random_var_freq); if (next == var_Undef){ // Model found: model.growTo(nVars()); for (int i = 0; i < nVars(); i++) model[i] = value(i); cancelUntil(root_level); return l_True; } check(assume(~Lit(next))); } } } // Return search-space coverage. Not extremely reliable. // double Solver::progressEstimate() { double progress = 0; double F = 1.0 / nVars(); for (int i = 0; i < nVars(); i++) if (value(i) != l_Undef) progress += pow(F, level[i]); return progress / nVars(); } // Divide all variable activities by 1e100. // void Solver::varRescaleActivity() { for (int i = 0; i < nVars(); i++) activity[i] *= 1e-100; var_inc *= 1e-100; } // Divide all constraint activities by 1e100. // void Solver::claRescaleActivity() { for (int i = 0; i < learnts.size(); i++) learnts[i]->activity() *= 1e-20; cla_inc *= 1e-20; } /*_________________________________________________________________________________________________ | | solve : (assumps : const vec&) -> [bool] | | Description: | Top-level solve. If using assumptions (non-empty 'assumps' vector), you must call | 'simplifyDB()' first to see that no top-level conflict is present (which would put the solver | in an undefined state). | | Input: | A list of assumptions (unit clauses coded as literals). Pre-condition: The assumptions must | not contain both 'x' and '~x' for any variable 'x'. |________________________________________________________________________________________________@*/ bool Solver::solve(const vec& assumps) { simplifyDB(); if (!ok) return false; SearchParams params(default_params); double nof_conflicts = 100; double nof_learnts = nClauses() / 3; lbool status = l_Undef; // Perform assumptions: root_level = assumps.size(); for (int i = 0; i < assumps.size(); i++){ Lit p = assumps[i]; assert(var(p) < nVars()); if (!assume(p)){ if (reason[var(p)] != NULL){ analyzeFinal(reason[var(p)], true); conflict.push(~p); }else{ assert(proof == NULL || unit_id[var(p)] != ClauseId_NULL); // (this is the pre-condition above) conflict.clear(); conflict.push(~p); if (proof != NULL) conflict_id = abs(unit_id[var(p)]); //HA: abs } cancelUntil(0); return false; } Clause* confl = propagate(); if (confl != NULL){ analyzeFinal(confl), assert(conflict.size() > 0); cancelUntil(0); return false; } } assert(root_level == decisionLevel()); // Search: if (verbosity >= 1){ reportf("==================================[MINISAT]===================================\n"); reportf("| Conflicts | ORIGINAL | LEARNT | Progress |\n"); reportf("| | Clauses Literals | Limit Clauses Literals Lit/Cl | |\n"); reportf("==============================================================================\n"); } while (status == l_Undef){ if (verbosity >= 1){ reportf("| %9d | %7d %8d | %7d %7d %8d %7.1f | %6.3f %% |\n", (int)stats.conflicts, nClauses(), (int)stats.clauses_literals, (int)nof_learnts, nLearnts(), (int)stats.learnts_literals, (double)stats.learnts_literals/nLearnts(), progress_estimate*100); fflush(stdout); } status = search((int)nof_conflicts, (int)nof_learnts, params); nof_conflicts *= 1.5; nof_learnts *= 1.1; } if (verbosity >= 1) reportf("==============================================================================\n"); /*DEBUG*/ for (int i = 0; i < conflict.size(); i++){ if (var(conflict[i]) >= 100){ Lit p = conflict[i]; Var x = var(p); printf("confl[%d] = "L_LIT"\n", i, L_lit(p)); printf("level = %d\n", level[x]); printf("reason = %p\n", reason[x]); printf("unit_id = %d\n", unit_id[x]); } } /*END*/ cancelUntil(0); return status == l_True; }