/* * CDDL HEADER START * * The contents of this file are subject to the terms of the * Common Development and Distribution License (the "License"). * You may not use this file except in compliance with the License. * * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE * or http://www.opensolaris.org/os/licensing. * See the License for the specific language governing permissions * and limitations under the License. * * When distributing Covered Code, include this CDDL HEADER in each * file and include the License file at usr/src/OPENSOLARIS.LICENSE. * If applicable, add the following below this CDDL HEADER, with the * fields enclosed by brackets "[]" replaced with your own identifying * information: Portions Copyright [yyyy] [name of copyright owner] * * CDDL HEADER END */ /* * Copyright(c) 2007-2010 Intel Corporation. All rights reserved. */ /* * Copyright (c) 2008, 2010, Oracle and/or its affiliates. All rights reserved. */ /* IntelVersion: 1.49 v3_3_14_3_BHSW1 */ #include "igb_api.h" static void e1000_stop_nvm(struct e1000_hw *hw); static void e1000_reload_nvm_generic(struct e1000_hw *hw); /* * e1000_init_nvm_ops_generic - Initialize NVM function pointers * @hw: pointer to the HW structure * * Setups up the function pointers to no-op functions */ void e1000_init_nvm_ops_generic(struct e1000_hw *hw) { struct e1000_nvm_info *nvm = &hw->nvm; DEBUGFUNC("e1000_init_nvm_ops_generic"); /* Initialize function pointers */ nvm->ops.init_params = e1000_null_ops_generic; nvm->ops.acquire = e1000_null_ops_generic; nvm->ops.read = e1000_null_read_nvm; nvm->ops.release = e1000_null_nvm_generic; nvm->ops.reload = e1000_reload_nvm_generic; nvm->ops.update = e1000_null_ops_generic; nvm->ops.valid_led_default = e1000_null_led_default; nvm->ops.validate = e1000_null_ops_generic; nvm->ops.write = e1000_null_write_nvm; } /* * e1000_null_nvm_read - No-op function, return 0 * @hw: pointer to the HW structure */ s32 e1000_null_read_nvm(struct e1000_hw *hw, u16 a, u16 b, u16 *c) { DEBUGFUNC("e1000_null_read_nvm"); UNREFERENCED_4PARAMETER(hw, a, b, c); return (E1000_SUCCESS); } /* * e1000_null_nvm_generic - No-op function, return void * @hw: pointer to the HW structure */ void e1000_null_nvm_generic(struct e1000_hw *hw) { DEBUGFUNC("e1000_null_nvm_generic"); UNREFERENCED_1PARAMETER(hw); } /* * e1000_null_led_default - No-op function, return 0 * @hw: pointer to the HW structure */ s32 e1000_null_led_default(struct e1000_hw *hw, u16 *data) { DEBUGFUNC("e1000_null_led_default"); UNREFERENCED_2PARAMETER(hw, data); return (E1000_SUCCESS); } /* * e1000_null_write_nvm - No-op function, return 0 * @hw: pointer to the HW structure */ s32 e1000_null_write_nvm(struct e1000_hw *hw, u16 a, u16 b, u16 *c) { DEBUGFUNC("e1000_null_write_nvm"); UNREFERENCED_4PARAMETER(hw, a, b, c); return (E1000_SUCCESS); } /* * e1000_raise_eec_clk - Raise EEPROM clock * @hw: pointer to the HW structure * @eecd: pointer to the EEPROM * * Enable/Raise the EEPROM clock bit. */ static void e1000_raise_eec_clk(struct e1000_hw *hw, u32 *eecd) { *eecd = *eecd | E1000_EECD_SK; E1000_WRITE_REG(hw, E1000_EECD, *eecd); E1000_WRITE_FLUSH(hw); usec_delay(hw->nvm.delay_usec); } /* * e1000_lower_eec_clk - Lower EEPROM clock * @hw: pointer to the HW structure * @eecd: pointer to the EEPROM * * Clear/Lower the EEPROM clock bit. */ static void e1000_lower_eec_clk(struct e1000_hw *hw, u32 *eecd) { *eecd = *eecd & ~E1000_EECD_SK; E1000_WRITE_REG(hw, E1000_EECD, *eecd); E1000_WRITE_FLUSH(hw); usec_delay(hw->nvm.delay_usec); } /* * e1000_shift_out_eec_bits - Shift data bits our to the EEPROM * @hw: pointer to the HW structure * @data: data to send to the EEPROM * @count: number of bits to shift out * * We need to shift 'count' bits out to the EEPROM. So, the value in the * "data" parameter will be shifted out to the EEPROM one bit at a time. * In order to do this, "data" must be broken down into bits. */ static void e1000_shift_out_eec_bits(struct e1000_hw *hw, u16 data, u16 count) { struct e1000_nvm_info *nvm = &hw->nvm; u32 eecd = E1000_READ_REG(hw, E1000_EECD); u32 mask; DEBUGFUNC("e1000_shift_out_eec_bits"); mask = 0x01 << (count - 1); if (nvm->type == e1000_nvm_eeprom_microwire) eecd &= ~E1000_EECD_DO; else if (nvm->type == e1000_nvm_eeprom_spi) eecd |= E1000_EECD_DO; do { eecd &= ~E1000_EECD_DI; if (data & mask) eecd |= E1000_EECD_DI; E1000_WRITE_REG(hw, E1000_EECD, eecd); E1000_WRITE_FLUSH(hw); usec_delay(nvm->delay_usec); e1000_raise_eec_clk(hw, &eecd); e1000_lower_eec_clk(hw, &eecd); mask >>= 1; } while (mask); eecd &= ~E1000_EECD_DI; E1000_WRITE_REG(hw, E1000_EECD, eecd); } /* * e1000_shift_in_eec_bits - Shift data bits in from the EEPROM * @hw: pointer to the HW structure * @count: number of bits to shift in * * In order to read a register from the EEPROM, we need to shift 'count' bits * in from the EEPROM. Bits are "shifted in" by raising the clock input to * the EEPROM (setting the SK bit), and then reading the value of the data out * "DO" bit. During this "shifting in" process the data in "DI" bit should * always be clear. */ static u16 e1000_shift_in_eec_bits(struct e1000_hw *hw, u16 count) { u32 eecd; u32 i; u16 data; DEBUGFUNC("e1000_shift_in_eec_bits"); eecd = E1000_READ_REG(hw, E1000_EECD); eecd &= ~(E1000_EECD_DO | E1000_EECD_DI); data = 0; for (i = 0; i < count; i++) { data <<= 1; e1000_raise_eec_clk(hw, &eecd); eecd = E1000_READ_REG(hw, E1000_EECD); eecd &= ~E1000_EECD_DI; if (eecd & E1000_EECD_DO) data |= 1; e1000_lower_eec_clk(hw, &eecd); } return (data); } /* * e1000_poll_eerd_eewr_done - Poll for EEPROM read/write completion * @hw: pointer to the HW structure * @ee_reg: EEPROM flag for polling * * Polls the EEPROM status bit for either read or write completion based * upon the value of 'ee_reg'. */ s32 e1000_poll_eerd_eewr_done(struct e1000_hw *hw, int ee_reg) { u32 attempts = 100000; u32 i, reg = 0; s32 ret_val = -E1000_ERR_NVM; DEBUGFUNC("e1000_poll_eerd_eewr_done"); for (i = 0; i < attempts; i++) { if (ee_reg == E1000_NVM_POLL_READ) reg = E1000_READ_REG(hw, E1000_EERD); else reg = E1000_READ_REG(hw, E1000_EEWR); if (reg & E1000_NVM_RW_REG_DONE) { ret_val = E1000_SUCCESS; break; } usec_delay(5); } return (ret_val); } /* * e1000_acquire_nvm_generic - Generic request for access to EEPROM * @hw: pointer to the HW structure * * Set the EEPROM access request bit and wait for EEPROM access grant bit. * Return successful if access grant bit set, else clear the request for * EEPROM access and return -E1000_ERR_NVM (-1). */ s32 e1000_acquire_nvm_generic(struct e1000_hw *hw) { u32 eecd = E1000_READ_REG(hw, E1000_EECD); s32 timeout = E1000_NVM_GRANT_ATTEMPTS; s32 ret_val = E1000_SUCCESS; DEBUGFUNC("e1000_acquire_nvm_generic"); E1000_WRITE_REG(hw, E1000_EECD, eecd | E1000_EECD_REQ); eecd = E1000_READ_REG(hw, E1000_EECD); while (timeout) { if (eecd & E1000_EECD_GNT) break; usec_delay(5); eecd = E1000_READ_REG(hw, E1000_EECD); timeout--; } if (!timeout) { eecd &= ~E1000_EECD_REQ; E1000_WRITE_REG(hw, E1000_EECD, eecd); DEBUGOUT("Could not acquire NVM grant\n"); ret_val = -E1000_ERR_NVM; } return (ret_val); } /* * e1000_standby_nvm - Return EEPROM to standby state * @hw: pointer to the HW structure * * Return the EEPROM to a standby state. */ static void e1000_standby_nvm(struct e1000_hw *hw) { struct e1000_nvm_info *nvm = &hw->nvm; u32 eecd = E1000_READ_REG(hw, E1000_EECD); DEBUGFUNC("e1000_standby_nvm"); if (nvm->type == e1000_nvm_eeprom_microwire) { eecd &= ~(E1000_EECD_CS | E1000_EECD_SK); E1000_WRITE_REG(hw, E1000_EECD, eecd); E1000_WRITE_FLUSH(hw); usec_delay(nvm->delay_usec); e1000_raise_eec_clk(hw, &eecd); /* Select EEPROM */ eecd |= E1000_EECD_CS; E1000_WRITE_REG(hw, E1000_EECD, eecd); E1000_WRITE_FLUSH(hw); usec_delay(nvm->delay_usec); e1000_lower_eec_clk(hw, &eecd); } else if (nvm->type == e1000_nvm_eeprom_spi) { /* Toggle CS to flush commands */ eecd |= E1000_EECD_CS; E1000_WRITE_REG(hw, E1000_EECD, eecd); E1000_WRITE_FLUSH(hw); usec_delay(nvm->delay_usec); eecd &= ~E1000_EECD_CS; E1000_WRITE_REG(hw, E1000_EECD, eecd); E1000_WRITE_FLUSH(hw); usec_delay(nvm->delay_usec); } } /* * e1000_stop_nvm - Terminate EEPROM command * @hw: pointer to the HW structure * * Terminates the current command by inverting the EEPROM's chip select pin. */ void e1000_stop_nvm(struct e1000_hw *hw) { u32 eecd; DEBUGFUNC("e1000_stop_nvm"); eecd = E1000_READ_REG(hw, E1000_EECD); if (hw->nvm.type == e1000_nvm_eeprom_spi) { /* Pull CS high */ eecd |= E1000_EECD_CS; e1000_lower_eec_clk(hw, &eecd); } else if (hw->nvm.type == e1000_nvm_eeprom_microwire) { /* CS on Microwire is active-high */ eecd &= ~(E1000_EECD_CS | E1000_EECD_DI); E1000_WRITE_REG(hw, E1000_EECD, eecd); e1000_raise_eec_clk(hw, &eecd); e1000_lower_eec_clk(hw, &eecd); } } /* * e1000_release_nvm_generic - Release exclusive access to EEPROM * @hw: pointer to the HW structure * * Stop any current commands to the EEPROM and clear the EEPROM request bit. */ void e1000_release_nvm_generic(struct e1000_hw *hw) { u32 eecd; DEBUGFUNC("e1000_release_nvm_generic"); e1000_stop_nvm(hw); eecd = E1000_READ_REG(hw, E1000_EECD); eecd &= ~E1000_EECD_REQ; E1000_WRITE_REG(hw, E1000_EECD, eecd); } /* * e1000_ready_nvm_eeprom - Prepares EEPROM for read/write * @hw: pointer to the HW structure * * Setups the EEPROM for reading and writing. */ static s32 e1000_ready_nvm_eeprom(struct e1000_hw *hw) { struct e1000_nvm_info *nvm = &hw->nvm; u32 eecd = E1000_READ_REG(hw, E1000_EECD); s32 ret_val = E1000_SUCCESS; u16 timeout = 0; u8 spi_stat_reg; DEBUGFUNC("e1000_ready_nvm_eeprom"); if (nvm->type == e1000_nvm_eeprom_microwire) { /* Clear SK and DI */ eecd &= ~(E1000_EECD_DI | E1000_EECD_SK); E1000_WRITE_REG(hw, E1000_EECD, eecd); /* Set CS */ eecd |= E1000_EECD_CS; E1000_WRITE_REG(hw, E1000_EECD, eecd); } else if (nvm->type == e1000_nvm_eeprom_spi) { /* Clear SK and CS */ eecd &= ~(E1000_EECD_CS | E1000_EECD_SK); E1000_WRITE_REG(hw, E1000_EECD, eecd); usec_delay(1); timeout = NVM_MAX_RETRY_SPI; /* * Read "Status Register" repeatedly until the LSB is cleared. * The EEPROM will signal that the command has been completed * by clearing bit 0 of the internal status register. If it's * not cleared within 'timeout', then error out. */ while (timeout) { e1000_shift_out_eec_bits(hw, NVM_RDSR_OPCODE_SPI, hw->nvm.opcode_bits); spi_stat_reg = (u8)e1000_shift_in_eec_bits(hw, 8); if (!(spi_stat_reg & NVM_STATUS_RDY_SPI)) break; usec_delay(5); e1000_standby_nvm(hw); timeout--; } if (!timeout) { DEBUGOUT("SPI NVM Status error\n"); ret_val = -E1000_ERR_NVM; goto out; } } out: return (ret_val); } /* * e1000_read_nvm_microwire - Reads EEPROM's using microwire * @hw: pointer to the HW structure * @offset: offset of word in the EEPROM to read * @words: number of words to read * @data: word read from the EEPROM * * Reads a 16 bit word from the EEPROM. */ s32 e1000_read_nvm_microwire(struct e1000_hw *hw, u16 offset, u16 words, u16 *data) { struct e1000_nvm_info *nvm = &hw->nvm; u32 i = 0; s32 ret_val; u8 read_opcode = NVM_READ_OPCODE_MICROWIRE; DEBUGFUNC("e1000_read_nvm_microwire"); /* * A check for invalid values: offset too large, too many words, * and not enough words. */ if ((offset >= nvm->word_size) || (words > (nvm->word_size - offset)) || (words == 0)) { DEBUGOUT("nvm parameter(s) out of bounds\n"); ret_val = -E1000_ERR_NVM; goto out; } ret_val = nvm->ops.acquire(hw); if (ret_val) goto out; ret_val = e1000_ready_nvm_eeprom(hw); if (ret_val) goto release; for (i = 0; i < words; i++) { /* Send the READ command (opcode + addr) */ e1000_shift_out_eec_bits(hw, read_opcode, nvm->opcode_bits); e1000_shift_out_eec_bits(hw, (u16)(offset + i), nvm->address_bits); /* * Read the data. For microwire, each word requires the * overhead of setup and tear-down. */ data[i] = e1000_shift_in_eec_bits(hw, 16); e1000_standby_nvm(hw); } release: nvm->ops.release(hw); out: return (ret_val); } /* * e1000_read_nvm_eerd - Reads EEPROM using EERD register * @hw: pointer to the HW structure * @offset: offset of word in the EEPROM to read * @words: number of words to read * @data: word read from the EEPROM * * Reads a 16 bit word from the EEPROM using the EERD register. */ s32 e1000_read_nvm_eerd(struct e1000_hw *hw, u16 offset, u16 words, u16 *data) { struct e1000_nvm_info *nvm = &hw->nvm; u32 i, eerd = 0; s32 ret_val = E1000_SUCCESS; DEBUGFUNC("e1000_read_nvm_eerd"); /* * A check for invalid values: offset too large, too many words, * too many words for the offset, and not enough words. */ if ((offset >= nvm->word_size) || (words > (nvm->word_size - offset)) || (words == 0)) { DEBUGOUT("nvm parameter(s) out of bounds\n"); ret_val = -E1000_ERR_NVM; goto out; } for (i = 0; i < words; i++) { eerd = ((offset+i) << E1000_NVM_RW_ADDR_SHIFT) + E1000_NVM_RW_REG_START; E1000_WRITE_REG(hw, E1000_EERD, eerd); ret_val = e1000_poll_eerd_eewr_done(hw, E1000_NVM_POLL_READ); if (ret_val) break; data[i] = (E1000_READ_REG(hw, E1000_EERD) >> E1000_NVM_RW_REG_DATA); } out: return (ret_val); } /* * e1000_write_nvm_spi - Write to EEPROM using SPI * @hw: pointer to the HW structure * @offset: offset within the EEPROM to be written to * @words: number of words to write * @data: 16 bit word(s) to be written to the EEPROM * * Writes data to EEPROM at offset using SPI interface. * * If e1000_update_nvm_checksum is not called after this function , the * EEPROM will most likely contain an invalid checksum. */ s32 e1000_write_nvm_spi(struct e1000_hw *hw, u16 offset, u16 words, u16 *data) { struct e1000_nvm_info *nvm = &hw->nvm; s32 ret_val; u16 widx = 0; DEBUGFUNC("e1000_write_nvm_spi"); /* * A check for invalid values: offset too large, too many words, * and not enough words. */ if ((offset >= nvm->word_size) || (words > (nvm->word_size - offset)) || (words == 0)) { DEBUGOUT("nvm parameter(s) out of bounds\n"); ret_val = -E1000_ERR_NVM; goto out; } ret_val = nvm->ops.acquire(hw); if (ret_val) goto out; while (widx < words) { u8 write_opcode = NVM_WRITE_OPCODE_SPI; ret_val = e1000_ready_nvm_eeprom(hw); if (ret_val) goto release; e1000_standby_nvm(hw); /* Send the WRITE ENABLE command (8 bit opcode) */ e1000_shift_out_eec_bits(hw, NVM_WREN_OPCODE_SPI, nvm->opcode_bits); e1000_standby_nvm(hw); /* * Some SPI eeproms use the 8th address bit embedded in the * opcode */ if ((nvm->address_bits == 8) && (offset >= 128)) write_opcode |= NVM_A8_OPCODE_SPI; /* Send the Write command (8-bit opcode + addr) */ e1000_shift_out_eec_bits(hw, write_opcode, nvm->opcode_bits); e1000_shift_out_eec_bits(hw, (u16)((offset + widx) * 2), nvm->address_bits); /* Loop to allow for up to whole page write of eeprom */ while (widx < words) { u16 word_out = data[widx]; word_out = (word_out >> 8) | (word_out << 8); e1000_shift_out_eec_bits(hw, word_out, 16); widx++; if ((((offset + widx) * 2) % nvm->page_size) == 0) { e1000_standby_nvm(hw); break; } } } msec_delay(10); release: nvm->ops.release(hw); out: return (ret_val); } /* * e1000_write_nvm_microwire - Writes EEPROM using microwire * @hw: pointer to the HW structure * @offset: offset within the EEPROM to be written to * @words: number of words to write * @data: 16 bit word(s) to be written to the EEPROM * * Writes data to EEPROM at offset using microwire interface. * * If e1000_update_nvm_checksum is not called after this function , the * EEPROM will most likely contain an invalid checksum. */ s32 e1000_write_nvm_microwire(struct e1000_hw *hw, u16 offset, u16 words, u16 *data) { struct e1000_nvm_info *nvm = &hw->nvm; s32 ret_val; u32 eecd; u16 words_written = 0; u16 widx = 0; DEBUGFUNC("e1000_write_nvm_microwire"); /* * A check for invalid values: offset too large, too many words, * and not enough words. */ if ((offset >= nvm->word_size) || (words > (nvm->word_size - offset)) || (words == 0)) { DEBUGOUT("nvm parameter(s) out of bounds\n"); ret_val = -E1000_ERR_NVM; goto out; } ret_val = nvm->ops.acquire(hw); if (ret_val) goto out; ret_val = e1000_ready_nvm_eeprom(hw); if (ret_val) goto release; e1000_shift_out_eec_bits(hw, NVM_EWEN_OPCODE_MICROWIRE, (u16)(nvm->opcode_bits + 2)); e1000_shift_out_eec_bits(hw, 0, (u16)(nvm->address_bits - 2)); e1000_standby_nvm(hw); while (words_written < words) { e1000_shift_out_eec_bits(hw, NVM_WRITE_OPCODE_MICROWIRE, nvm->opcode_bits); e1000_shift_out_eec_bits(hw, (u16)(offset + words_written), nvm->address_bits); e1000_shift_out_eec_bits(hw, data[words_written], 16); e1000_standby_nvm(hw); for (widx = 0; widx < 200; widx++) { eecd = E1000_READ_REG(hw, E1000_EECD); if (eecd & E1000_EECD_DO) break; usec_delay(50); } if (widx == 200) { DEBUGOUT("NVM Write did not complete\n"); ret_val = -E1000_ERR_NVM; goto release; } e1000_standby_nvm(hw); words_written++; } e1000_shift_out_eec_bits(hw, NVM_EWDS_OPCODE_MICROWIRE, (u16)(nvm->opcode_bits + 2)); e1000_shift_out_eec_bits(hw, 0, (u16)(nvm->address_bits - 2)); release: nvm->ops.release(hw); out: return (ret_val); } /* * e1000_read_pba_num_generic - Read device part number * @hw: pointer to the HW structure * @pba_num: pointer to device part number * * Reads the product board assembly (PBA) number from the EEPROM and stores * the value in pba_num. */ s32 e1000_read_pba_num_generic(struct e1000_hw *hw, u32 *pba_num) { s32 ret_val; u16 nvm_data; DEBUGFUNC("e1000_read_pba_num_generic"); ret_val = hw->nvm.ops.read(hw, NVM_PBA_OFFSET_0, 1, &nvm_data); if (ret_val) { DEBUGOUT("NVM Read Error\n"); goto out; } *pba_num = (u32)(nvm_data << 16); ret_val = hw->nvm.ops.read(hw, NVM_PBA_OFFSET_1, 1, &nvm_data); if (ret_val) { DEBUGOUT("NVM Read Error\n"); goto out; } *pba_num |= nvm_data; out: return (ret_val); } /* * e1000_read_mac_addr_generic - Read device MAC address * @hw: pointer to the HW structure * * Reads the device MAC address from the EEPROM and stores the value. * Since devices with two ports use the same EEPROM, we increment the * last bit in the MAC address for the second port. */ s32 e1000_read_mac_addr_generic(struct e1000_hw *hw) { u32 rar_high; u32 rar_low; u16 i; rar_high = E1000_READ_REG(hw, E1000_RAH(0)); rar_low = E1000_READ_REG(hw, E1000_RAL(0)); for (i = 0; i < E1000_RAL_MAC_ADDR_LEN; i++) hw->mac.perm_addr[i] = (u8)(rar_low >> (i*8)); for (i = 0; i < E1000_RAH_MAC_ADDR_LEN; i++) hw->mac.perm_addr[i+4] = (u8)(rar_high >> (i*8)); for (i = 0; i < ETH_ADDR_LEN; i++) hw->mac.addr[i] = hw->mac.perm_addr[i]; return (E1000_SUCCESS); } /* * e1000_validate_nvm_checksum_generic - Validate EEPROM checksum * @hw: pointer to the HW structure * * Calculates the EEPROM checksum by reading/adding each word of the EEPROM * and then verifies that the sum of the EEPROM is equal to 0xBABA. */ s32 e1000_validate_nvm_checksum_generic(struct e1000_hw *hw) { s32 ret_val = E1000_SUCCESS; u16 checksum = 0; u16 i, nvm_data; DEBUGFUNC("e1000_validate_nvm_checksum_generic"); for (i = 0; i < (NVM_CHECKSUM_REG + 1); i++) { ret_val = hw->nvm.ops.read(hw, i, 1, &nvm_data); if (ret_val) { DEBUGOUT("NVM Read Error\n"); goto out; } checksum += nvm_data; } if (checksum != (u16) NVM_SUM) { DEBUGOUT("NVM Checksum Invalid\n"); ret_val = -E1000_ERR_NVM; goto out; } out: return (ret_val); } /* * e1000_update_nvm_checksum_generic - Update EEPROM checksum * @hw: pointer to the HW structure * * Updates the EEPROM checksum by reading/adding each word of the EEPROM * up to the checksum. Then calculates the EEPROM checksum and writes the * value to the EEPROM. */ s32 e1000_update_nvm_checksum_generic(struct e1000_hw *hw) { s32 ret_val; u16 checksum = 0; u16 i, nvm_data; DEBUGFUNC("e1000_update_nvm_checksum"); for (i = 0; i < NVM_CHECKSUM_REG; i++) { ret_val = hw->nvm.ops.read(hw, i, 1, &nvm_data); if (ret_val) { DEBUGOUT("NVM Read Error while updating checksum.\n"); goto out; } checksum += nvm_data; } checksum = (u16) NVM_SUM - checksum; ret_val = hw->nvm.ops.write(hw, NVM_CHECKSUM_REG, 1, &checksum); if (ret_val) DEBUGOUT("NVM Write Error while updating checksum.\n"); out: return (ret_val); } /* * e1000_reload_nvm_generic - Reloads EEPROM * @hw: pointer to the HW structure * * Reloads the EEPROM by setting the "Reinitialize from EEPROM" bit in the * extended control register. */ void e1000_reload_nvm_generic(struct e1000_hw *hw) { u32 ctrl_ext; DEBUGFUNC("e1000_reload_nvm_generic"); usec_delay(10); ctrl_ext = E1000_READ_REG(hw, E1000_CTRL_EXT); ctrl_ext |= E1000_CTRL_EXT_EE_RST; E1000_WRITE_REG(hw, E1000_CTRL_EXT, ctrl_ext); E1000_WRITE_FLUSH(hw); }