#!./perl # # test the conversion operators # # Notations: # # "N p i N vs N N": Apply op-N, then op-p, then op-i, then reporter-N # Compare with application of op-N, then reporter-N # Right below are descriptions of different ops and reporters. # We do not use these subroutines any more, sub overhead makes a "switch" # solution better: # obviously, 0, 1 and 2, 3 are destructive. (XXXX 64-bit? 4 destructive too) # *0 = sub {--$_[0]}; # - # *1 = sub {++$_[0]}; # + # # Converters # *2 = sub { $_[0] = $max_uv & $_[0]}; # U # *3 = sub { use integer; $_[0] += $zero}; # I # *4 = sub { $_[0] += $zero}; # N # *5 = sub { $_[0] = "$_[0]" }; # P # # Side effects # *6 = sub { $max_uv & $_[0]}; # u # *7 = sub { use integer; $_[0] + $zero}; # i # *8 = sub { $_[0] + $zero}; # n # *9 = sub { $_[0] . "" }; # p # # Reporters # sub a2 { sprintf "%u", $_[0] } # U # sub a3 { sprintf "%d", $_[0] } # I # sub a4 { sprintf "%g", $_[0] } # N # sub a5 { "$_[0]" } # P BEGIN { chdir 't' if -d 't'; @INC = '../lib'; } use strict 'vars'; my $max_chain = $ENV{PERL_TEST_NUMCONVERTS} || 2; # Bulk out if unsigned type is hopelessly wrong: my $max_uv1 = ~0; my $max_uv2 = sprintf "%u", $max_uv1 ** 6; # 6 is an arbitrary number here my $big_iv = do {use integer; $max_uv1 * 16}; # 16 is an arbitrary number here my $max_uv_less3 = $max_uv1 - 3; print "# max_uv1 = $max_uv1, max_uv2 = $max_uv2, big_iv = $big_iv\n"; print "# max_uv_less3 = $max_uv_less3\n"; if ($max_uv1 ne $max_uv2 or $big_iv > $max_uv1 or $max_uv1 == $max_uv_less3) { print "1..0 # skipped: unsigned perl arithmetic is not sane"; eval { require Config; import Config }; use vars qw(%Config); if ($Config{d_quad} eq 'define') { print " (common in 64-bit platforms)"; } print "\n"; exit 0; } if ($max_uv_less3 =~ tr/0-9//c) { print "1..0 # skipped: this perl stringifies large unsigned integers using E notation\n"; exit 0; } my $st_t = 4*4; # We try 4 initializers and 4 reporters my $num = 0; $num += 10**$_ - 4**$_ for 1.. $max_chain; $num *= $st_t; print "1..$num\n"; # In fact 15 times more subsubtests... my $max_uv = ~0; my $max_iv = int($max_uv/2); my $zero = 0; my $l_uv = length $max_uv; my $l_iv = length $max_iv; # Hope: the first digits are good my $larger_than_uv = substr 97 x 100, 0, $l_uv; my $smaller_than_iv = substr 12 x 100, 0, $l_iv; my $yet_smaller_than_iv = substr 97 x 100, 0, ($l_iv - 1); my @list = (1, $yet_smaller_than_iv, $smaller_than_iv, $max_iv, $max_iv + 1, $max_uv, $max_uv + 1); unshift @list, (reverse map -$_, @list), 0; # 15 elts @list = map "$_", @list; # Normalize print "# @list\n"; # need to special case ++ for max_uv, as ++ "magic" on a string gives # another string, whereas ++ magic on a string used as a number gives # a number. Not a problem when NV preserves UV, but if it doesn't then # stringification of the latter gives something in e notation. my $max_uv_pp = "$max_uv"; $max_uv_pp++; my $max_uv_p1 = "$max_uv"; $max_uv_p1+=0; $max_uv_p1++; # Also need to cope with %g notation for max_uv_p1 that actually gives an # integer less than max_uv because of correct rounding for the limited # precisision. This bites for 12 byte long doubles and 8 byte UVs my $temp = $max_uv_p1; my $max_uv_p1_as_iv; {use integer; $max_uv_p1_as_iv = 0 + sprintf "%s", $temp} my $max_uv_p1_as_uv = 0 | sprintf "%s", $temp; my @opnames = split //, "-+UINPuinp"; # @list = map { 2->($_), 3->($_), 4->($_), 5->($_), } @list; # Prepare input #print "@list\n"; #print "'@ops'\n"; my $test = 1; my $nok; for my $num_chain (1..$max_chain) { my @ops = map [split //], grep /[4-9]/, map { sprintf "%0${num_chain}d", $_ } 0 .. 10**$num_chain - 1; #@ops = ([]) unless $num_chain; #@ops = ([6, 4]); # print "'@ops'\n"; for my $op (@ops) { for my $first (2..5) { for my $last (2..5) { $nok = 0; my @otherops = grep $_ <= 3, @$op; my @curops = ($op,\@otherops); for my $num (@list) { my $inpt; my @ans; for my $short (0, 1) { # undef $inpt; # Forget all we had - some bugs were masked $inpt = $num; # Try to not contaminate $num... $inpt = "$inpt"; if ($first == 2) { $inpt = $max_uv & $inpt; # U 2 } elsif ($first == 3) { use integer; $inpt += $zero; # I 3 } elsif ($first == 4) { $inpt += $zero; # N 4 } else { $inpt = "$inpt"; # P 5 } # Saves 20% of time - not with this logic: #my $tmp = $inpt; #my $tmp1 = $num; #next if $num_chain > 1 # and "$tmp" ne "$tmp1"; # Already the coercion gives problems... for my $curop (@{$curops[$short]}) { if ($curop < 5) { if ($curop < 3) { if ($curop == 0) { --$inpt; # - 0 } elsif ($curop == 1) { ++$inpt; # + 1 } else { $inpt = $max_uv & $inpt; # U 2 } } elsif ($curop == 3) { use integer; $inpt += $zero; } else { $inpt += $zero; # N 4 } } elsif ($curop < 8) { if ($curop == 5) { $inpt = "$inpt"; # P 5 } elsif ($curop == 6) { $max_uv & $inpt; # u 6 } else { use integer; $inpt + $zero; } } elsif ($curop == 8) { $inpt + $zero; # n 8 } else { $inpt . ""; # p 9 } } if ($last == 2) { $inpt = sprintf "%u", $inpt; # U 2 } elsif ($last == 3) { $inpt = sprintf "%d", $inpt; # I 3 } elsif ($last == 4) { $inpt = sprintf "%g", $inpt; # N 4 } else { $inpt = "$inpt"; # P 5 } push @ans, $inpt; } if ($ans[0] ne $ans[1]) { print "# '$ans[0]' ne '$ans[1]',\t$num\t=> @opnames[$first,@{$curops[0]},$last] vs @opnames[$first,@{$curops[1]},$last]\n"; # XXX ought to check that "+" was in the list of opnames if ((($ans[0] eq $max_uv_pp) and ($ans[1] eq $max_uv_p1)) or (($ans[1] eq $max_uv_pp) and ($ans[0] eq $max_uv_p1))) { # string ++ versus numeric ++. Tolerate this little # bit of insanity print "# ok, as string ++ of max_uv is \"$max_uv_pp\", numeric is $max_uv_p1\n" } elsif ($opnames[$last] eq 'I' and $ans[1] eq "-1" and $ans[0] eq $max_uv_p1_as_iv) { # Max UV plus 1 is NV. This NV may stringify in E notation. # And the number of decimal digits shown in E notation will depend # on the binary digits in the mantissa. And it may be that # (say) 18446744073709551616 in E notation is truncated to # (say) 1.8446744073709551e+19 (say) which gets converted back # as 1.8446744073709551000e+19 # ie 18446744073709551000 # which isn't the integer we first had. # But each step of conversion is correct. So it's not an error. # (Only shows up for 64 bit UVs and NVs with 64 bit mantissas, # and on Crays (64 bit integers, 48 bit mantissas) IIRC) print "# ok, \"$max_uv_p1\" correctly converts to IV \"$max_uv_p1_as_iv\"\n"; } elsif ($opnames[$last] eq 'U' and $ans[1] eq ~0 and $ans[0] eq $max_uv_p1_as_uv) { # as aboce print "# ok, \"$max_uv_p1\" correctly converts to UV \"$max_uv_p1_as_uv\"\n"; } elsif (grep {/^N$/} @opnames[@{$curops[0]}] and $ans[0] == $ans[1] and $ans[0] <= ~0 # First must be in E notation (ie not just digits) and # second must still be an integer. # eg 1.84467440737095516e+19 # 1.84467440737095516e+19 for 64 bit mantissa is in the # integer range, so 1.84467440737095516e+19 + 0 is treated # as integer addition. [should it be?] # and 18446744073709551600 + 0 is 18446744073709551600 # Which isn't the string you first thought of. # I can't remember why there isn't symmetry in this # exception, ie why only the first ops are tested for 'N' and $ans[0] != /^-?\d+$/ and $ans[1] !~ /^-?\d+$/) { print "# ok, numerically equal - notation changed due to adding zero\n"; } else { $nok++, } } } if ($nok) { print "not ok $test\n"; } else { print "ok $test\n"; } #print $txt if $nok; $test++; } } } }