/* * Copyright (c) 1997, 2016, Oracle and/or its affiliates. All rights reserved. * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. * * This code is free software; you can redistribute it and/or modify it * under the terms of the GNU General Public License version 2 only, as * published by the Free Software Foundation. Oracle designates this * particular file as subject to the "Classpath" exception as provided * by Oracle in the LICENSE file that accompanied this code. * * This code is distributed in the hope that it will be useful, but WITHOUT * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License * version 2 for more details (a copy is included in the LICENSE file that * accompanied this code). * * You should have received a copy of the GNU General Public License version * 2 along with this work; if not, write to the Free Software Foundation, * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. * * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA * or visit www.oracle.com if you need additional information or have any * questions. */ /* * DESCRIPTION * Calculates cliping boundary for Affine functions. * */ #include "mlib_image.h" #include "mlib_SysMath.h" #include "mlib_ImageAffine.h" #include "safe_math.h" /***************************************************************/ mlib_status mlib_AffineEdges(mlib_affine_param *param, const mlib_image *dst, const mlib_image *src, void *buff_lcl, mlib_s32 buff_size, mlib_s32 kw, mlib_s32 kh, mlib_s32 kw1, mlib_s32 kh1, mlib_edge edge, const mlib_d64 *mtx, mlib_s32 shiftx, mlib_s32 shifty) { mlib_u8 *buff = buff_lcl; mlib_u8 **lineAddr = param->lineAddr; mlib_s32 srcWidth, dstWidth, srcHeight, dstHeight, srcYStride, dstYStride; mlib_s32 *leftEdges, *rightEdges, *xStarts, *yStarts, bsize0, bsize1 = 0; mlib_u8 *srcData, *dstData; mlib_u8 *paddings; void *warp_tbl = NULL; mlib_s32 yStart = 0, yFinish = -1, dX, dY; mlib_d64 xClip, yClip, wClip, hClip; mlib_d64 delta = 0.; mlib_d64 minX, minY, maxX, maxY; mlib_d64 coords[4][2]; mlib_d64 a = mtx[0], b = mtx[1], tx = mtx[2], c = mtx[3], d = mtx[4], ty = mtx[5]; mlib_d64 a2, b2, tx2, c2, d2, ty2; mlib_d64 dx, dy, div; mlib_s32 sdx, sdy; mlib_d64 dTop; mlib_d64 val0; mlib_s32 top, bot; mlib_s32 topIdx, max_xsize = 0; mlib_s32 i, j, t; srcData = mlib_ImageGetData(src); dstData = mlib_ImageGetData(dst); srcWidth = mlib_ImageGetWidth(src); srcHeight = mlib_ImageGetHeight(src); dstWidth = mlib_ImageGetWidth(dst); dstHeight = mlib_ImageGetHeight(dst); srcYStride = mlib_ImageGetStride(src); dstYStride = mlib_ImageGetStride(dst); paddings = mlib_ImageGetPaddings(src); /* All the transformation matrix parameters should be finite. if not, return failure */ if (!(IS_FINITE(a) && IS_FINITE(b) && IS_FINITE(c) && IS_FINITE(d) && IS_FINITE(tx) && IS_FINITE(ty))) { return MLIB_FAILURE; } if (srcWidth >= (1 << 15) || srcHeight >= (1 << 15)) { return MLIB_FAILURE; } div = a * d - b * c; if (div == 0.0) { return MLIB_FAILURE; } bsize0 = (dstHeight * sizeof(mlib_s32) + 7) & ~7; if (lineAddr == NULL) { bsize1 = ((srcHeight + 4 * kh) * sizeof(mlib_u8 *) + 7) & ~7; } param->buff_malloc = NULL; if ((4 * bsize0 + bsize1) > buff_size) { buff = param->buff_malloc = mlib_malloc(4 * bsize0 + bsize1); if (buff == NULL) return MLIB_FAILURE; } leftEdges = (mlib_s32 *) (buff); rightEdges = (mlib_s32 *) (buff += bsize0); xStarts = (mlib_s32 *) (buff += bsize0); yStarts = (mlib_s32 *) (buff += bsize0); if (lineAddr == NULL) { mlib_u8 *srcLinePtr = srcData; lineAddr = (mlib_u8 **) (buff += bsize0); for (i = 0; i < 2 * kh; i++) lineAddr[i] = srcLinePtr; lineAddr += 2 * kh; for (i = 0; i < srcHeight - 1; i++) { lineAddr[i] = srcLinePtr; srcLinePtr += srcYStride; } for (i = srcHeight - 1; i < srcHeight + 2 * kh; i++) lineAddr[i] = srcLinePtr; } if ((mlib_s32) edge < 0) { /* process edges */ minX = 0; minY = 0; maxX = srcWidth; maxY = srcHeight; } else { if (kw > 1) delta = -0.5; /* for MLIB_NEAREST filter delta = 0. */ minX = (kw1 - delta); minY = (kh1 - delta); maxX = srcWidth - ((kw - 1) - (kw1 - delta)); maxY = srcHeight - ((kh - 1) - (kh1 - delta)); if (edge == MLIB_EDGE_SRC_PADDED) { if (minX < paddings[0]) minX = paddings[0]; if (minY < paddings[1]) minY = paddings[1]; if (maxX > (srcWidth - paddings[2])) maxX = srcWidth - paddings[2]; if (maxY > (srcHeight - paddings[3])) maxY = srcHeight - paddings[3]; } } xClip = minX; yClip = minY; wClip = maxX; hClip = maxY; /* * STORE_PARAM(param, src); * STORE_PARAM(param, dst); */ param->src = (void *)src; param->dst = (void *)dst; STORE_PARAM(param, lineAddr); STORE_PARAM(param, dstData); STORE_PARAM(param, srcYStride); STORE_PARAM(param, dstYStride); STORE_PARAM(param, leftEdges); STORE_PARAM(param, rightEdges); STORE_PARAM(param, xStarts); STORE_PARAM(param, yStarts); STORE_PARAM(param, max_xsize); STORE_PARAM(param, yStart); STORE_PARAM(param, yFinish); STORE_PARAM(param, warp_tbl); if ((xClip >= wClip) || (yClip >= hClip)) { return MLIB_SUCCESS; } a2 = d; b2 = -b; tx2 = (-d * tx + b * ty); c2 = -c; d2 = a; ty2 = (c * tx - a * ty); dx = a2; dy = c2; tx -= 0.5; ty -= 0.5; coords[0][0] = xClip * a + yClip * b + tx; coords[0][1] = xClip * c + yClip * d + ty; coords[2][0] = wClip * a + hClip * b + tx; coords[2][1] = wClip * c + hClip * d + ty; if (div > 0) { coords[1][0] = wClip * a + yClip * b + tx; coords[1][1] = wClip * c + yClip * d + ty; coords[3][0] = xClip * a + hClip * b + tx; coords[3][1] = xClip * c + hClip * d + ty; } else { coords[3][0] = wClip * a + yClip * b + tx; coords[3][1] = wClip * c + yClip * d + ty; coords[1][0] = xClip * a + hClip * b + tx; coords[1][1] = xClip * c + hClip * d + ty; } topIdx = 0; for (i = 1; i < 4; i++) { if (coords[i][1] < coords[topIdx][1]) topIdx = i; } dTop = coords[topIdx][1]; val0 = dTop; SAT32(top); bot = -1; if (top >= dstHeight) { return MLIB_SUCCESS; } if (dTop >= 0.0) { mlib_d64 xLeft, xRight, x; mlib_s32 nextIdx; if (dTop == top) { xLeft = coords[topIdx][0]; xRight = coords[topIdx][0]; nextIdx = (topIdx + 1) & 0x3; if (dTop == coords[nextIdx][1]) { x = coords[nextIdx][0]; xLeft = (xLeft <= x) ? xLeft : x; xRight = (xRight >= x) ? xRight : x; } nextIdx = (topIdx - 1) & 0x3; if (dTop == coords[nextIdx][1]) { x = coords[nextIdx][0]; xLeft = (xLeft <= x) ? xLeft : x; xRight = (xRight >= x) ? xRight : x; } val0 = xLeft; SAT32(t); leftEdges[top] = (t >= xLeft) ? t : ++t; if (xLeft >= MLIB_S32_MAX) leftEdges[top] = MLIB_S32_MAX; val0 = xRight; SAT32(rightEdges[top]); } else top++; } else top = 0; for (i = 0; i < 2; i++) { mlib_d64 dY1 = coords[(topIdx - i) & 0x3][1]; mlib_d64 dX1 = coords[(topIdx - i) & 0x3][0]; mlib_d64 dY2 = coords[(topIdx - i - 1) & 0x3][1]; mlib_d64 dX2 = coords[(topIdx - i - 1) & 0x3][0]; mlib_d64 x = dX1, slope = (dX2 - dX1) / (dY2 - dY1); mlib_s32 y1; mlib_s32 y2; if (dY1 == dY2) continue; if (!(IS_FINITE(slope))) { continue; } if (dY1 < 0.0) y1 = 0; else { val0 = dY1 + 1; SAT32(y1); } val0 = dY2; SAT32(y2); if (y2 >= dstHeight) y2 = (mlib_s32) (dstHeight - 1); x += slope * (y1 - dY1); #ifdef __SUNPRO_C #pragma pipeloop(0) #endif /* __SUNPRO_C */ for (j = y1; j <= y2; j++) { val0 = x; SAT32(t); leftEdges[j] = (t >= x) ? t : ++t; if (x >= MLIB_S32_MAX) leftEdges[j] = MLIB_S32_MAX; x += slope; } } for (i = 0; i < 2; i++) { mlib_d64 dY1 = coords[(topIdx + i) & 0x3][1]; mlib_d64 dX1 = coords[(topIdx + i) & 0x3][0]; mlib_d64 dY2 = coords[(topIdx + i + 1) & 0x3][1]; mlib_d64 dX2 = coords[(topIdx + i + 1) & 0x3][0]; mlib_d64 x = dX1, slope = (dX2 - dX1) / (dY2 - dY1); mlib_s32 y1; mlib_s32 y2; if (dY1 == dY2) continue; if (!(IS_FINITE(slope))) { continue; } if (dY1 < 0.0) y1 = 0; else { val0 = dY1 + 1; SAT32(y1); } val0 = dY2; SAT32(y2); if (y2 >= dstHeight) y2 = (mlib_s32) (dstHeight - 1); x += slope * (y1 - dY1); #ifdef __SUNPRO_C #pragma pipeloop(0) #endif /* __SUNPRO_C */ for (j = y1; j <= y2; j++) { val0 = x; SAT32(rightEdges[j]); x += slope; } bot = y2; } { mlib_d64 dxCl = xClip * div; mlib_d64 dyCl = yClip * div; mlib_d64 dwCl = wClip * div; mlib_d64 dhCl = hClip * div; mlib_s32 xCl = (mlib_s32) (xClip + delta); mlib_s32 yCl = (mlib_s32) (yClip + delta); mlib_s32 wCl = (mlib_s32) (wClip + delta); mlib_s32 hCl = (mlib_s32) (hClip + delta); /* * mlib_s32 xCl = (mlib_s32)(xClip + delta); * mlib_s32 yCl = (mlib_s32)(yClip + delta); * mlib_s32 wCl = (mlib_s32)(wClip); * mlib_s32 hCl = (mlib_s32)(hClip); */ if (edge == MLIB_EDGE_SRC_PADDED) { xCl = kw1; yCl = kh1; wCl = (mlib_s32) (srcWidth - ((kw - 1) - kw1)); hCl = (mlib_s32) (srcHeight - ((kh - 1) - kh1)); } div = 1.0 / div; sdx = (mlib_s32) (a2 * div * (1 << shiftx)); sdy = (mlib_s32) (c2 * div * (1 << shifty)); if (div > 0) { #ifdef __SUNPRO_C #pragma pipeloop(0) #endif /* __SUNPRO_C */ for (i = top; i <= bot; i++) { mlib_s32 xLeft = leftEdges[i]; mlib_s32 xRight = rightEdges[i]; mlib_s32 xs, ys, x_e, y_e, x_s, y_s; mlib_d64 dxs, dys, dxe, dye; mlib_d64 xl, ii, xr; xLeft = (xLeft < 0) ? 0 : xLeft; xRight = (xRight >= dstWidth) ? (mlib_s32) (dstWidth - 1) : xRight; xl = xLeft + 0.5; ii = i + 0.5; xr = xRight + 0.5; dxs = xl * a2 + ii * b2 + tx2; dys = xl * c2 + ii * d2 + ty2; if ((dxs < dxCl) || (dxs >= dwCl) || (dys < dyCl) || (dys >= dhCl)) { dxs += dx; dys += dy; xLeft++; if ((dxs < dxCl) || (dxs >= dwCl) || (dys < dyCl) || (dys >= dhCl)) xRight = -1; } dxe = xr * a2 + ii * b2 + tx2; dye = xr * c2 + ii * d2 + ty2; if ((dxe < dxCl) || (dxe >= dwCl) || (dye < dyCl) || (dye >= dhCl)) { dxe -= dx; dye -= dy; xRight--; if ((dxe < dxCl) || (dxe >= dwCl) || (dye < dyCl) || (dye >= dhCl)) xRight = -1; } xs = (mlib_s32) ((dxs * div + delta) * (1 << shiftx)); x_s = xs >> shiftx; ys = (mlib_s32) ((dys * div + delta) * (1 << shifty)); y_s = ys >> shifty; if (x_s < xCl) xs = (xCl << shiftx); else if (x_s >= wCl) xs = ((wCl << shiftx) - 1); if (y_s < yCl) ys = (yCl << shifty); else if (y_s >= hCl) ys = ((hCl << shifty) - 1); if (xRight >= xLeft) { x_e = ((xRight - xLeft) * sdx + xs) >> shiftx; y_e = ((xRight - xLeft) * sdy + ys) >> shifty; if ((x_e < xCl) || (x_e >= wCl)) { if (sdx > 0) sdx -= 1; else sdx += 1; } if ((y_e < yCl) || (y_e >= hCl)) { if (sdy > 0) sdy -= 1; else sdy += 1; } } leftEdges[i] = xLeft; rightEdges[i] = xRight; xStarts[i] = xs; yStarts[i] = ys; if ((xRight - xLeft + 1) > max_xsize) max_xsize = (xRight - xLeft + 1); } } else { #ifdef __SUNPRO_C #pragma pipeloop(0) #endif /* __SUNPRO_C */ for (i = top; i <= bot; i++) { mlib_s32 xLeft = leftEdges[i]; mlib_s32 xRight = rightEdges[i]; mlib_s32 xs, ys, x_e, y_e, x_s, y_s; mlib_d64 dxs, dys, dxe, dye; mlib_d64 xl, ii, xr; xLeft = (xLeft < 0) ? 0 : xLeft; xRight = (xRight >= dstWidth) ? (mlib_s32) (dstWidth - 1) : xRight; xl = xLeft + 0.5; ii = i + 0.5; xr = xRight + 0.5; dxs = xl * a2 + ii * b2 + tx2; dys = xl * c2 + ii * d2 + ty2; if ((dxs > dxCl) || (dxs <= dwCl) || (dys > dyCl) || (dys <= dhCl)) { dxs += dx; dys += dy; xLeft++; if ((dxs > dxCl) || (dxs <= dwCl) || (dys > dyCl) || (dys <= dhCl)) xRight = -1; } dxe = xr * a2 + ii * b2 + tx2; dye = xr * c2 + ii * d2 + ty2; if ((dxe > dxCl) || (dxe <= dwCl) || (dye > dyCl) || (dye <= dhCl)) { dxe -= dx; dye -= dy; xRight--; if ((dxe > dxCl) || (dxe <= dwCl) || (dye > dyCl) || (dye <= dhCl)) xRight = -1; } xs = (mlib_s32) ((dxs * div + delta) * (1 << shiftx)); x_s = xs >> shiftx; if (x_s < xCl) xs = (xCl << shiftx); else if (x_s >= wCl) xs = ((wCl << shiftx) - 1); ys = (mlib_s32) ((dys * div + delta) * (1 << shifty)); y_s = ys >> shifty; if (y_s < yCl) ys = (yCl << shifty); else if (y_s >= hCl) ys = ((hCl << shifty) - 1); if (xRight >= xLeft) { x_e = ((xRight - xLeft) * sdx + xs) >> shiftx; y_e = ((xRight - xLeft) * sdy + ys) >> shifty; if ((x_e < xCl) || (x_e >= wCl)) { if (sdx > 0) sdx -= 1; else sdx += 1; } if ((y_e < yCl) || (y_e >= hCl)) { if (sdy > 0) sdy -= 1; else sdy += 1; } } leftEdges[i] = xLeft; rightEdges[i] = xRight; xStarts[i] = xs; yStarts[i] = ys; if ((xRight - xLeft + 1) > max_xsize) max_xsize = (xRight - xLeft + 1); } } } while (leftEdges[top] > rightEdges[top] && top <= bot) top++; if (top < bot) while (leftEdges[bot] > rightEdges[bot]) bot--; yStart = top; yFinish = bot; dX = sdx; dY = sdy; dstData += (yStart - 1) * dstYStride; STORE_PARAM(param, dstData); STORE_PARAM(param, yStart); STORE_PARAM(param, yFinish); STORE_PARAM(param, max_xsize); STORE_PARAM(param, dX); STORE_PARAM(param, dY); return MLIB_SUCCESS; } /***************************************************************/