/* * Copyright (c) 1998, 2001, Oracle and/or its affiliates. All rights reserved. * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. * * This code is free software; you can redistribute it and/or modify it * under the terms of the GNU General Public License version 2 only, as * published by the Free Software Foundation. Oracle designates this * particular file as subject to the "Classpath" exception as provided * by Oracle in the LICENSE file that accompanied this code. * * This code is distributed in the hope that it will be useful, but WITHOUT * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License * version 2 for more details (a copy is included in the LICENSE file that * accompanied this code). * * You should have received a copy of the GNU General Public License version * 2 along with this work; if not, write to the Free Software Foundation, * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. * * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA * or visit www.oracle.com if you need additional information or have any * questions. */ /* __ieee754_cosh(x) * Method : * mathematically cosh(x) if defined to be (exp(x)+exp(-x))/2 * 1. Replace x by |x| (cosh(x) = cosh(-x)). * 2. * [ exp(x) - 1 ]^2 * 0 <= x <= ln2/2 : cosh(x) := 1 + ------------------- * 2*exp(x) * * exp(x) + 1/exp(x) * ln2/2 <= x <= 22 : cosh(x) := ------------------- * 2 * 22 <= x <= lnovft : cosh(x) := exp(x)/2 * lnovft <= x <= ln2ovft: cosh(x) := exp(x/2)/2 * exp(x/2) * ln2ovft < x : cosh(x) := huge*huge (overflow) * * Special cases: * cosh(x) is |x| if x is +INF, -INF, or NaN. * only cosh(0)=1 is exact for finite x. */ #include "fdlibm.h" #ifdef __STDC__ static const double one = 1.0, half=0.5, huge = 1.0e300; #else static double one = 1.0, half=0.5, huge = 1.0e300; #endif #ifdef __STDC__ double __ieee754_cosh(double x) #else double __ieee754_cosh(x) double x; #endif { double t,w; int ix; unsigned lx; /* High word of |x|. */ ix = __HI(x); ix &= 0x7fffffff; /* x is INF or NaN */ if(ix>=0x7ff00000) return x*x; /* |x| in [0,0.5*ln2], return 1+expm1(|x|)^2/(2*exp(|x|)) */ if(ix<0x3fd62e43) { t = expm1(fabs(x)); w = one+t; if (ix<0x3c800000) return w; /* cosh(tiny) = 1 */ return one+(t*t)/(w+w); } /* |x| in [0.5*ln2,22], return (exp(|x|)+1/exp(|x|)/2; */ if (ix < 0x40360000) { t = __ieee754_exp(fabs(x)); return half*t+half/t; } /* |x| in [22, log(maxdouble)] return half*exp(|x|) */ if (ix < 0x40862E42) return half*__ieee754_exp(fabs(x)); /* |x| in [log(maxdouble), overflowthresold] */ lx = *( (((*(unsigned*)&one)>>29)) + (unsigned*)&x); if (ix<0x408633CE || ((ix==0x408633ce)&&(lx<=(unsigned)0x8fb9f87d))) { w = __ieee754_exp(half*fabs(x)); t = half*w; return t*w; } /* |x| > overflowthresold, cosh(x) overflow */ return huge*huge; }