/* $OpenBSD: if_nfe.c,v 1.5 2006/01/14 04:33:35 jsg Exp $ */ /* * Copyright (c) 2005 Jonathan Gray * * Permission to use, copy, modify, and distribute this software for any * purpose with or without fee is hereby granted, provided that the above * copyright notice and this permission notice appear in all copies. * * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. */ /* Driver for nvidia nForce Ethernet */ #include "bpfilter.h" #include "vlan.h" #include #include #include #include #include #include #include #include #include #include #include #include #include #include #ifdef INET #include #include #include #include #include #endif #if NVLAN > 0 #include #include #endif #if NBPFILTER > 0 #include #endif #include #include #include #include #include #include #include int nfe_match(struct device *, void *, void *); void nfe_attach(struct device *, struct device *, void *); int nfe_intr(void *); int nfe_alloc_rx_ring(struct nfe_softc *, struct nfe_rx_ring *); void nfe_reset_rx_ring(struct nfe_softc *, struct nfe_rx_ring *); void nfe_free_rx_ring(struct nfe_softc *, struct nfe_rx_ring *); int nfe_rxintr(struct nfe_softc *); int nfe_alloc_tx_ring(struct nfe_softc *, struct nfe_tx_ring *); void nfe_reset_tx_ring(struct nfe_softc *, struct nfe_tx_ring *); void nfe_free_tx_ring(struct nfe_softc *, struct nfe_tx_ring *); int nfe_txintr(struct nfe_softc *); int nfe_ioctl(struct ifnet *, u_long, caddr_t); void nfe_start(struct ifnet *); void nfe_stop(struct ifnet *, int); void nfe_watchdog(struct ifnet *); int nfe_init(struct ifnet *); void nfe_reset(struct nfe_softc *); void nfe_setmulti(struct nfe_softc *); void nfe_update_promisc(struct nfe_softc *); void nfe_tick(void *); int nfe_miibus_readreg(struct device *, int, int); void nfe_miibus_writereg(struct device *, int, int, int); void nfe_miibus_statchg(struct device *); int nfe_mediachange(struct ifnet *); void nfe_mediastatus(struct ifnet *, struct ifmediareq *); struct cfattach nfe_ca = { sizeof(struct nfe_softc), nfe_match, nfe_attach }; struct cfdriver nfe_cd = { 0, "nfe", DV_IFNET }; #ifdef NFE_DEBUG int nfedebug = 1; #define DPRINTF(x) do { if (nfedebug) printf x; } while (0) #define DPRINTFN(n,x) do { if (nfedebug >= (n)) printf x; } while (0) #else #define DPRINTF(x) #define DPRINTFN(n,x) #endif const struct pci_matchid nfe_devices[] = { { PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_NFORCE_LAN }, { PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_NFORCE2_LAN }, { PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_NFORCE3_LAN1 }, { PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_NFORCE3_LAN2 }, { PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_NFORCE3_LAN3 }, { PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_NFORCE3_LAN4 }, { PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_NFORCE3_LAN5 }, { PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_CK804_LAN1 }, { PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_CK804_LAN2 }, { PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP04_LAN1 }, { PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP04_LAN2 }, { PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP51_LAN1 }, { PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP51_LAN2 }, { PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP55_LAN1 }, { PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP55_LAN2 }, }; int nfe_match(struct device *dev, void *match, void *aux) { return (pci_matchbyid((struct pci_attach_args *)aux, nfe_devices, sizeof(nfe_devices)/sizeof(nfe_devices[0]))); } void nfe_attach(struct device *parent, struct device *self, void *aux) { struct nfe_softc *sc = (struct nfe_softc *)self; struct pci_attach_args *pa = aux; pci_chipset_tag_t pc = pa->pa_pc; pci_intr_handle_t ih; const char *intrstr = NULL; struct ifnet *ifp; bus_size_t iosize; pcireg_t command; int i; /* * Map control/status registers. */ command = pci_conf_read(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG); command |= PCI_COMMAND_MEM_ENABLE | PCI_COMMAND_MASTER_ENABLE; pci_conf_write(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG, command); command = pci_conf_read(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG); if ((command & PCI_COMMAND_MEM_ENABLE) == 0) { printf(": mem space not enabled\n"); return; } if (pci_mapreg_map(pa, NFE_PCI_BA, PCI_MAPREG_TYPE_MEM, 0, &sc->sc_iot, &sc->sc_ioh, NULL, &iosize, 0)) { printf(": can't map mem space\n"); return; } /* Allocate interrupt */ if (pci_intr_map(pa, &ih)) { printf(": couldn't map interrupt\n"); return; } intrstr = pci_intr_string(pc, ih); sc->sc_ih = pci_intr_establish(pc, ih, IPL_NET, nfe_intr, sc, sc->sc_dev.dv_xname); if (sc->sc_ih == NULL) { printf(": couldn't establish interrupt"); if (intrstr != NULL) printf(" at %s", intrstr); return; } printf(": %s", intrstr); sc->sc_dmat = pa->pa_dmat; i = betoh16(NFE_READ(sc, NFE_MACADDR_LO) & 0xffff); memcpy((char *)sc->sc_arpcom.ac_enaddr, &i, 2); i = betoh32(NFE_READ(sc, NFE_MACADDR_HI)); memcpy(&(sc->sc_arpcom.ac_enaddr[2]), &i, 4); printf(", address %s\n", ether_sprintf(sc->sc_arpcom.ac_enaddr)); switch(PCI_PRODUCT(pa->pa_id)) { case PCI_PRODUCT_NVIDIA_NFORCE3_LAN2: case PCI_PRODUCT_NVIDIA_NFORCE3_LAN3: case PCI_PRODUCT_NVIDIA_NFORCE3_LAN4: case PCI_PRODUCT_NVIDIA_NFORCE3_LAN5: sc->sc_flags |= NFE_JUMBO_SUP; break; case PCI_PRODUCT_NVIDIA_CK804_LAN1: case PCI_PRODUCT_NVIDIA_CK804_LAN2: case PCI_PRODUCT_NVIDIA_MCP04_LAN1: case PCI_PRODUCT_NVIDIA_MCP04_LAN2: case PCI_PRODUCT_NVIDIA_MCP51_LAN1: case PCI_PRODUCT_NVIDIA_MCP51_LAN2: case PCI_PRODUCT_NVIDIA_MCP55_LAN1: case PCI_PRODUCT_NVIDIA_MCP55_LAN2: sc->sc_flags |= NFE_JUMBO_SUP | NFE_40BIT_ADDR; break; default: sc->sc_flags = 0; } /* * Allocate Tx and Rx rings. */ if (nfe_alloc_tx_ring(sc, &sc->txq) != 0) { printf("%s: could not allocate Tx ring\n", sc->sc_dev.dv_xname); goto fail1; } if (nfe_alloc_rx_ring(sc, &sc->rxq) != 0) { printf("%s: could not allocate Rx ring\n", sc->sc_dev.dv_xname); goto fail2; } NFE_WRITE(sc, NFE_RING_SIZE, NFE_RX_RING_COUNT << 16 | NFE_TX_RING_COUNT); ifp = &sc->sc_arpcom.ac_if; ifp->if_softc = sc; ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST; ifp->if_ioctl = nfe_ioctl; ifp->if_start = nfe_start; ifp->if_watchdog = nfe_watchdog; ifp->if_init = nfe_init; ifp->if_baudrate = 1000000000; IFQ_SET_MAXLEN(&ifp->if_snd, NFE_IFQ_MAXLEN); IFQ_SET_READY(&ifp->if_snd); /* Set interface name */ strlcpy(ifp->if_xname, sc->sc_dev.dv_xname, IFNAMSIZ); sc->sc_mii.mii_ifp = ifp; sc->sc_mii.mii_readreg = nfe_miibus_readreg; sc->sc_mii.mii_writereg = nfe_miibus_writereg; sc->sc_mii.mii_statchg = nfe_miibus_statchg; /* XXX always seem to get a ghost ukphy along with eephy on nf4u */ ifmedia_init(&sc->sc_mii.mii_media, 0, nfe_mediachange, nfe_mediastatus); mii_attach(self, &sc->sc_mii, 0xffffffff, MII_PHY_ANY, MII_OFFSET_ANY, 0); if (LIST_FIRST(&sc->sc_mii.mii_phys) == NULL) { printf("%s: no PHY found!\n", sc->sc_dev.dv_xname); ifmedia_add(&sc->sc_mii.mii_media, IFM_ETHER|IFM_MANUAL, 0, NULL); ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_MANUAL); } else ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_AUTO); if_attach(ifp); ether_ifattach(ifp); /* XXX powerhook */ return; fail2: nfe_free_tx_ring(sc, &sc->txq); fail1: nfe_free_rx_ring(sc, &sc->rxq); return; } void nfe_miibus_statchg(struct device *dev) { struct nfe_softc *sc = (struct nfe_softc *) dev; struct mii_data *mii = &sc->sc_mii; uint32_t reg; reg = NFE_READ(sc, NFE_PHY_INT); switch (IFM_SUBTYPE(mii->mii_media_active)) { case IFM_1000_T: reg |= NFE_PHY_1000T; break; case IFM_100_TX: reg |= NFE_PHY_100TX; break; } NFE_WRITE(sc, NFE_PHY_INT, reg); } int nfe_miibus_readreg(struct device *dev, int phy, int reg) { struct nfe_softc *sc = (struct nfe_softc *) dev; uint32_t r; r = NFE_READ(sc, NFE_PHY_CTL); if (r & NFE_PHY_BUSY) { NFE_WRITE(sc, NFE_PHY_CTL, NFE_PHY_BUSY); delay(100); } NFE_WRITE(sc, NFE_PHY_CTL, reg | (phy << NFE_PHYADD_SHIFT)); delay(1000); r = NFE_READ(sc, NFE_PHY_DATA); if (r != 0xffffffff && r != 0) sc->phyaddr = phy; DPRINTFN(2, ("nfe mii read phy %d reg 0x%x ret 0x%x\n", phy, reg, r)); return (r); } void nfe_miibus_writereg(struct device *dev, int phy, int reg, int data) { struct nfe_softc *sc = (struct nfe_softc *) dev; uint32_t r; r = NFE_READ(sc, NFE_PHY_CTL); if (r & NFE_PHY_BUSY) { NFE_WRITE(sc, NFE_PHY_CTL, NFE_PHY_BUSY); delay(100); } NFE_WRITE(sc, NFE_PHY_DATA, data); r = reg | (phy << NFE_PHYADD_SHIFT) | NFE_PHY_WRITE; NFE_WRITE(sc, NFE_PHY_CTL, r); } int nfe_intr(void *arg) { struct nfe_softc *sc = arg; uint32_t r; /* disable interrupts */ NFE_WRITE(sc, NFE_IRQ_MASK, 0); r = NFE_READ(sc, NFE_IRQ_STATUS); NFE_WRITE(sc, NFE_IRQ_STATUS, r); if (r == 0) { NFE_WRITE(sc, NFE_IRQ_MASK, NFE_IRQ_WANTED | NFE_IRQ_TIMER); return(0); } if (r & NFE_IRQ_RX) nfe_rxintr(sc); if (r & NFE_IRQ_TX_DONE) nfe_txintr(sc); DPRINTF(("nfe_intr: interrupt register %x", r)); /* re-enable interrupts */ NFE_WRITE(sc, NFE_IRQ_MASK, NFE_IRQ_WANTED | NFE_IRQ_TIMER); return (1); } int nfe_ioctl(struct ifnet *ifp, u_long cmd, caddr_t data) { struct nfe_softc *sc = ifp->if_softc; struct ifreq *ifr = (struct ifreq *)data; struct ifaddr *ifa = (struct ifaddr *) data; int s, error = 0; s = splnet(); if ((error = ether_ioctl(ifp, &sc->sc_arpcom, cmd, data)) > 0) { splx(s); return (error); } switch (cmd) { case SIOCSIFMTU: if (ifr->ifr_mtu < ETHERMIN || ifr->ifr_mtu > ETHERMTU) error = EINVAL; else if (ifp->if_mtu != ifr->ifr_mtu) ifp->if_mtu = ifr->ifr_mtu; break; case SIOCSIFMEDIA: case SIOCGIFMEDIA: error = ifmedia_ioctl(ifp, ifr, &sc->sc_mii.mii_media, cmd); break; case SIOCSIFADDR: ifp->if_flags |= IFF_UP; switch (ifa->ifa_addr->sa_family) { #ifdef INET case AF_INET: nfe_init(ifp); arp_ifinit(&sc->sc_arpcom, ifa); break; #endif default: nfe_init(ifp); break; } break; case SIOCADDMULTI: case SIOCDELMULTI: if (cmd == SIOCADDMULTI) error = ether_addmulti(ifr, &sc->sc_arpcom); else error = ether_delmulti(ifr, &sc->sc_arpcom); if (error == ENETRESET) { if (ifp->if_flags & IFF_RUNNING) nfe_setmulti(sc); error = 0; } break; case SIOCSIFFLAGS: if (ifp->if_flags & IFF_UP) { if (ifp->if_flags & IFF_RUNNING) nfe_update_promisc(sc); else nfe_init(ifp); } else { if (ifp->if_flags & IFF_RUNNING) nfe_stop(ifp, 1); } break; default: error = EINVAL; } splx(s); return (error); } void nfe_start(struct ifnet *ifp) { } void nfe_stop(struct ifnet *ifp, int disable) { struct nfe_softc *sc = ifp->if_softc; timeout_del(&sc->sc_timeout); ifp->if_timer = 0; ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE); /* abort Tx */ NFE_WRITE(sc, NFE_TX_CTL, 0); /* disable Rx */ NFE_WRITE(sc, NFE_RX_CTL, 0); /* disable interrupts */ NFE_WRITE(sc, NFE_IRQ_MASK, 0); /* reset Tx and Rx rings */ nfe_reset_tx_ring(sc, &sc->txq); nfe_reset_rx_ring(sc, &sc->rxq); } void nfe_watchdog(struct ifnet *ifp) { } int nfe_init(struct ifnet *ifp) { struct nfe_softc *sc = ifp->if_softc; int r; nfe_stop(ifp, 0); NFE_WRITE(sc, NFE_TX_UNK, 0); NFE_WRITE(sc, NFE_RXTX_CTL, NFE_RXTX_RESET | NFE_RXTX_BIT2); delay(10); r = NFE_RXTX_BIT2; if (sc->sc_flags & NFE_40BIT_ADDR) r |= NFE_RXTX_V3MAGIC|NFE_RXTX_RXCHECK; else if (sc->sc_flags & NFE_JUMBO_SUP) r |= NFE_RXTX_V2MAGIC|NFE_RXTX_RXCHECK; NFE_WRITE(sc, NFE_RXTX_CTL, r); NFE_WRITE(sc, NFE_SETUP_R6, 0); /* XXX set MAC address */ /* Tell MAC where rings are in memory */ NFE_WRITE(sc, NFE_RX_RING_ADDR, sc->rxq.physaddr); NFE_WRITE(sc, NFE_TX_RING_ADDR, sc->txq.physaddr); NFE_WRITE(sc, NFE_SETUP_R1, NFE_R1_MAGIC); NFE_WRITE(sc, NFE_SETUP_R2, NFE_R2_MAGIC); NFE_WRITE(sc, NFE_TIMER_INT, 970); /* XXX Magic */ NFE_WRITE(sc, NFE_SETUP_R4, NFE_R4_MAGIC); NFE_WRITE(sc, NFE_WOL_CTL, NFE_WOL_MAGIC); /* enable Rx */ NFE_WRITE(sc, NFE_RX_CTL, NFE_RX_START); nfe_setmulti(sc); /* enable interrupts */ NFE_WRITE(sc, NFE_IRQ_MASK, NFE_IRQ_RXERR | NFE_IRQ_RX | NFE_IRQ_RX_NOBUF | NFE_IRQ_TXERR | NFE_IRQ_TX_DONE | NFE_IRQ_LINK | NFE_IRQ_TXERR2); mii_mediachg(&sc->sc_mii); timeout_set(&sc->sc_timeout, nfe_tick, sc); ifp->if_flags |= IFF_RUNNING; ifp->if_flags &= ~IFF_OACTIVE; return (0); } void nfe_reset(struct nfe_softc *sc) { printf("nfe_reset!\n"); } int nfe_alloc_rx_ring(struct nfe_softc *sc, struct nfe_rx_ring *ring) { struct nfe_rx_data *data; struct nfe_desc *desc_v1; struct nfe_desc_v3 *desc_v3; void **desc; int i, nsegs, error, descsize; if (sc->sc_flags & NFE_40BIT_ADDR) { desc = (void **)&ring->desc_v3; descsize = sizeof(struct nfe_desc_v3); } else { desc = (void **)&ring->desc_v1; descsize = sizeof(struct nfe_desc); } ring->cur = ring->next = 0; error = bus_dmamap_create(sc->sc_dmat, NFE_RX_RING_COUNT * descsize, 1, NFE_RX_RING_COUNT * descsize, 0, BUS_DMA_NOWAIT, &ring->map); if (error != 0) { printf("%s: could not create desc DMA map\n", sc->sc_dev.dv_xname); goto fail; } error = bus_dmamem_alloc(sc->sc_dmat, NFE_RX_RING_COUNT * descsize, PAGE_SIZE, 0, &ring->seg, 1, &nsegs, BUS_DMA_NOWAIT); if (error != 0) { printf("%s: could not allocate DMA memory\n", sc->sc_dev.dv_xname); goto fail; } error = bus_dmamem_map(sc->sc_dmat, &ring->seg, nsegs, NFE_RX_RING_COUNT * descsize, (caddr_t *)desc, BUS_DMA_NOWAIT); if (error != 0) { printf("%s: could not map desc DMA memory\n", sc->sc_dev.dv_xname); goto fail; } error = bus_dmamap_load(sc->sc_dmat, ring->map, *desc, NFE_RX_RING_COUNT * descsize, NULL, BUS_DMA_NOWAIT); if (error != 0) { printf("%s: could not load desc DMA map\n", sc->sc_dev.dv_xname); goto fail; } memset(*desc, 0, NFE_RX_RING_COUNT * descsize); ring->physaddr = ring->map->dm_segs->ds_addr; /* * Pre-allocate Rx buffers and populate Rx ring. */ for (i = 0; i < NFE_RX_RING_COUNT; i++) { data = &sc->rxq.data[i]; error = bus_dmamap_create(sc->sc_dmat, MCLBYTES, 1, MCLBYTES, 0, BUS_DMA_NOWAIT, &data->map); if (error != 0) { printf("%s: could not create DMA map\n", sc->sc_dev.dv_xname); goto fail; } MGETHDR(data->m, M_DONTWAIT, MT_DATA); if (data->m == NULL) { printf("%s: could not allocate rx mbuf\n", sc->sc_dev.dv_xname); error = ENOMEM; goto fail; } MCLGET(data->m, M_DONTWAIT); if (!(data->m->m_flags & M_EXT)) { printf("%s: could not allocate rx mbuf cluster\n", sc->sc_dev.dv_xname); error = ENOMEM; goto fail; } error = bus_dmamap_load(sc->sc_dmat, data->map, mtod(data->m, void *), MCLBYTES, NULL, BUS_DMA_NOWAIT); if (error != 0) { printf("%s: could not load rx buf DMA map", sc->sc_dev.dv_xname); goto fail; } if (sc->sc_flags & NFE_40BIT_ADDR) { desc_v3 = &sc->rxq.desc_v3[i]; desc_v3->physaddr[0] = #if 0 (htole64(data->map->dm_segs->ds_addr) >> 32) & 0xffffffff; #endif 0; desc_v3->physaddr[1] = htole64(data->map->dm_segs->ds_addr) & 0xffffffff; desc_v3->length = htole16(MCLBYTES); desc_v3->flags = htole16(NFE_RX_READY); } else { desc_v1 = &sc->rxq.desc_v1[i]; desc_v1->physaddr = htole32(data->map->dm_segs->ds_addr); desc_v1->length = htole16(MCLBYTES); desc_v1->flags = htole16(NFE_RX_READY); } } bus_dmamap_sync(sc->sc_dmat, ring->map, 0, ring->map->dm_mapsize, BUS_DMASYNC_PREWRITE); return 0; fail: nfe_free_rx_ring(sc, ring); return error; } void nfe_reset_rx_ring(struct nfe_softc *sc, struct nfe_rx_ring *ring) { int i; for (i = 0; i < NFE_RX_RING_COUNT; i++) { if (sc->sc_flags & NFE_40BIT_ADDR) { ring->desc_v3[i].length = htole16(MCLBYTES); ring->desc_v3[i].flags = htole16(NFE_RX_READY); } else { ring->desc_v1[i].length = htole16(MCLBYTES); ring->desc_v1[i].flags = htole16(NFE_RX_READY); } } bus_dmamap_sync(sc->sc_dmat, ring->map, 0, ring->map->dm_mapsize, BUS_DMASYNC_PREWRITE); ring->cur = ring->next = 0; } void nfe_free_rx_ring(struct nfe_softc *sc, struct nfe_rx_ring *ring) { struct nfe_rx_data *data; void *desc; int i, descsize; if (sc->sc_flags & NFE_40BIT_ADDR) { desc = ring->desc_v3; descsize = sizeof(struct nfe_desc_v3); } else { desc = ring->desc_v1; descsize = sizeof(struct nfe_desc); } if (desc != NULL) { bus_dmamap_sync(sc->sc_dmat, ring->map, 0, ring->map->dm_mapsize, BUS_DMASYNC_POSTWRITE); bus_dmamap_unload(sc->sc_dmat, ring->map); bus_dmamem_unmap(sc->sc_dmat, (caddr_t)desc, NFE_RX_RING_COUNT * descsize); bus_dmamem_free(sc->sc_dmat, &ring->seg, 1); } for (i = 0; i < NFE_RX_RING_COUNT; i++) { data = &ring->data[i]; if (data->m != NULL) { bus_dmamap_sync(sc->sc_dmat, data->map, 0, data->map->dm_mapsize, BUS_DMASYNC_POSTREAD); bus_dmamap_unload(sc->sc_dmat, data->map); m_freem(data->m); } if (data->map != NULL) bus_dmamap_destroy(sc->sc_dmat, data->map); } } int nfe_rxintr(struct nfe_softc *sc) { printf("nfe_rxintr!\n"); return (0); } int nfe_alloc_tx_ring(struct nfe_softc *sc, struct nfe_tx_ring *ring) { int i, nsegs, error; void **desc; int descsize; if (sc->sc_flags & NFE_40BIT_ADDR) { desc = (void **)&ring->desc_v3; descsize = sizeof(struct nfe_desc_v3); } else { desc = (void **)&ring->desc_v1; descsize = sizeof(struct nfe_desc); } ring->queued = 0; ring->cur = ring->next = 0; error = bus_dmamap_create(sc->sc_dmat, NFE_TX_RING_COUNT * descsize, 1, NFE_TX_RING_COUNT * descsize, 0, BUS_DMA_NOWAIT, &ring->map); if (error != 0) { printf("%s: could not create desc DMA map\n", sc->sc_dev.dv_xname); goto fail; } error = bus_dmamem_alloc(sc->sc_dmat, NFE_TX_RING_COUNT * descsize, PAGE_SIZE, 0, &ring->seg, 1, &nsegs, BUS_DMA_NOWAIT); if (error != 0) { printf("%s: could not allocate DMA memory\n", sc->sc_dev.dv_xname); goto fail; } error = bus_dmamem_map(sc->sc_dmat, &ring->seg, nsegs, NFE_TX_RING_COUNT * sizeof(struct nfe_desc), (caddr_t *)desc, BUS_DMA_NOWAIT); if (error != 0) { printf("%s: could not map desc DMA memory\n", sc->sc_dev.dv_xname); goto fail; } error = bus_dmamap_load(sc->sc_dmat, ring->map, *desc, NFE_TX_RING_COUNT * descsize, NULL, BUS_DMA_NOWAIT); if (error != 0) { printf("%s: could not load desc DMA map\n", sc->sc_dev.dv_xname); goto fail; } memset(*desc, 0, NFE_TX_RING_COUNT * descsize); ring->physaddr = ring->map->dm_segs->ds_addr; for (i = 0; i < NFE_TX_RING_COUNT; i++) { error = bus_dmamap_create(sc->sc_dmat, MCLBYTES, NFE_MAX_SCATTER, MCLBYTES, 0, BUS_DMA_NOWAIT, &ring->data[i].map); if (error != 0) { printf("%s: could not create DMA map\n", sc->sc_dev.dv_xname); goto fail; } } return 0; fail: nfe_free_tx_ring(sc, ring); return error; } void nfe_reset_tx_ring(struct nfe_softc *sc, struct nfe_tx_ring *ring) { void *desc; struct nfe_tx_data *data; int i; for (i = 0; i < NFE_TX_RING_COUNT; i++) { if (sc->sc_flags & NFE_40BIT_ADDR) desc = &ring->desc_v3[i]; else desc = &ring->desc_v1[i]; data = &ring->data[i]; if (data->m != NULL) { bus_dmamap_sync(sc->sc_dmat, data->map, 0, data->map->dm_mapsize, BUS_DMASYNC_POSTWRITE); bus_dmamap_unload(sc->sc_dmat, data->map); m_freem(data->m); data->m = NULL; } if (sc->sc_flags & NFE_40BIT_ADDR) ((struct nfe_desc_v3 *)desc)->flags = 0; else ((struct nfe_desc *)desc)->flags = 0; } bus_dmamap_sync(sc->sc_dmat, ring->map, 0, ring->map->dm_mapsize, BUS_DMASYNC_PREWRITE); ring->queued = 0; ring->cur = ring->next = 0; } void nfe_free_tx_ring(struct nfe_softc *sc, struct nfe_tx_ring *ring) { struct nfe_tx_data *data; void *desc; int i, descsize; if (sc->sc_flags & NFE_40BIT_ADDR) { desc = ring->desc_v3; descsize = sizeof(struct nfe_desc_v3); } else { desc = ring->desc_v1; descsize = sizeof(struct nfe_desc); } if (desc != NULL) { bus_dmamap_sync(sc->sc_dmat, ring->map, 0, ring->map->dm_mapsize, BUS_DMASYNC_POSTWRITE); bus_dmamap_unload(sc->sc_dmat, ring->map); bus_dmamem_unmap(sc->sc_dmat, (caddr_t)desc, NFE_TX_RING_COUNT * descsize); bus_dmamem_free(sc->sc_dmat, &ring->seg, 1); } for (i = 0; i < NFE_TX_RING_COUNT; i++) { data = &ring->data[i]; if (data->m != NULL) { bus_dmamap_sync(sc->sc_dmat, data->map, 0, data->map->dm_mapsize, BUS_DMASYNC_POSTWRITE); bus_dmamap_unload(sc->sc_dmat, data->map); m_freem(data->m); } if (data->map != NULL) bus_dmamap_destroy(sc->sc_dmat, data->map); } } int nfe_txintr(struct nfe_softc *sc) { printf("nfe_txintr!\n"); return (0); } int nfe_mediachange(struct ifnet *ifp) { struct nfe_softc *sc = ifp->if_softc; struct mii_data *mii = &sc->sc_mii; int val; DPRINTF(("nfe_mediachange\n")); #if 0 if ((mii->mii_media_active & IFM_GMASK) == IFM_FDX) /* XXX? */ else #endif val = 0; val |= NFE_MEDIA_SET; switch (IFM_SUBTYPE(mii->mii_media_active)) { case IFM_1000_T: val |= NFE_MEDIA_1000T; break; case IFM_100_TX: val |= NFE_MEDIA_100TX; break; case IFM_10_T: val |= NFE_MEDIA_10T; break; } DPRINTF(("nfe_miibus_statchg: val=0x%x\n", val)); NFE_WRITE(sc, NFE_LINKSPEED, val); return (0); } void nfe_mediastatus(struct ifnet *ifp, struct ifmediareq *ifmr) { struct nfe_softc *sc = ifp->if_softc; mii_pollstat(&sc->sc_mii); ifmr->ifm_status = sc->sc_mii.mii_media_status; ifmr->ifm_active = sc->sc_mii.mii_media_active; } void nfe_setmulti(struct nfe_softc *sc) { NFE_WRITE(sc, NFE_MULT_ADDR1, 0x01); NFE_WRITE(sc, NFE_MULT_ADDR2, 0); NFE_WRITE(sc, NFE_MULT_MASK1, 0); NFE_WRITE(sc, NFE_MULT_MASK2, 0); #ifdef notyet NFE_WRITE(sc, NFE_MULTI_FLAGS, NFE_MC_ALWAYS | NFE_MC_MYADDR); #else NFE_WRITE(sc, NFE_MULTI_FLAGS, NFE_MC_ALWAYS | NFE_MC_PROMISC); #endif } void nfe_update_promisc(struct nfe_softc *sc) { } void nfe_tick(void *arg) { struct nfe_softc *sc = arg; int s; s = splnet(); mii_tick(&sc->sc_mii); splx(s); timeout_add(&sc->sc_timeout, hz); }