/* SPDX-License-Identifier: GPL-2.0 OR MIT */ /************************************************************************** * * Copyright (c) 2007-2009 VMware, Inc., Palo Alto, CA., USA * All Rights Reserved. * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the * "Software"), to deal in the Software without restriction, including * without limitation the rights to use, copy, modify, merge, publish, * distribute, sub license, and/or sell copies of the Software, and to * permit persons to whom the Software is furnished to do so, subject to * the following conditions: * * The above copyright notice and this permission notice (including the * next paragraph) shall be included in all copies or substantial portions * of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. IN NO EVENT SHALL * THE COPYRIGHT HOLDERS, AUTHORS AND/OR ITS SUPPLIERS BE LIABLE FOR ANY CLAIM, * DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR * OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE * USE OR OTHER DEALINGS IN THE SOFTWARE. * **************************************************************************/ /* * Authors: Thomas Hellstrom */ #include #include #include #include #include struct ttm_transfer_obj { struct ttm_buffer_object base; struct ttm_buffer_object *bo; }; int ttm_mem_io_reserve(struct ttm_device *bdev, struct ttm_resource *mem) { if (mem->bus.offset || mem->bus.addr) return 0; mem->bus.is_iomem = false; if (!bdev->funcs->io_mem_reserve) return 0; return bdev->funcs->io_mem_reserve(bdev, mem); } void ttm_mem_io_free(struct ttm_device *bdev, struct ttm_resource *mem) { if (!mem) return; if (!mem->bus.offset && !mem->bus.addr) return; if (bdev->funcs->io_mem_free) bdev->funcs->io_mem_free(bdev, mem); mem->bus.offset = 0; mem->bus.addr = NULL; } /** * ttm_move_memcpy - Helper to perform a memcpy ttm move operation. * @clear: Whether to clear rather than copy. * @num_pages: Number of pages of the operation. * @dst_iter: A struct ttm_kmap_iter representing the destination resource. * @src_iter: A struct ttm_kmap_iter representing the source resource. * * This function is intended to be able to move out async under a * dma-fence if desired. */ void ttm_move_memcpy(bool clear, u32 num_pages, struct ttm_kmap_iter *dst_iter, struct ttm_kmap_iter *src_iter, bus_space_tag_t memt) { const struct ttm_kmap_iter_ops *dst_ops = dst_iter->ops; const struct ttm_kmap_iter_ops *src_ops = src_iter->ops; struct iosys_map src_map, dst_map; pgoff_t i; /* Single TTM move. NOP */ if (dst_ops->maps_tt && src_ops->maps_tt) return; /* Don't move nonexistent data. Clear destination instead. */ if (clear) { for (i = 0; i < num_pages; ++i) { dst_ops->map_local(dst_iter, &dst_map, i, memt); if (dst_map.is_iomem) memset_io(dst_map.vaddr_iomem, 0, PAGE_SIZE); else memset(dst_map.vaddr, 0, PAGE_SIZE); if (dst_ops->unmap_local) dst_ops->unmap_local(dst_iter, &dst_map, memt); } return; } for (i = 0; i < num_pages; ++i) { dst_ops->map_local(dst_iter, &dst_map, i, memt); src_ops->map_local(src_iter, &src_map, i, memt); drm_memcpy_from_wc(&dst_map, &src_map, PAGE_SIZE); if (src_ops->unmap_local) src_ops->unmap_local(src_iter, &src_map, memt); if (dst_ops->unmap_local) dst_ops->unmap_local(dst_iter, &dst_map, memt); } } EXPORT_SYMBOL(ttm_move_memcpy); /** * ttm_bo_move_memcpy * * @bo: A pointer to a struct ttm_buffer_object. * @ctx: operation context * @dst_mem: struct ttm_resource indicating where to move. * * Fallback move function for a mappable buffer object in mappable memory. * The function will, if successful, * free any old aperture space, and set (@new_mem)->mm_node to NULL, * and update the (@bo)->mem placement flags. If unsuccessful, the old * data remains untouched, and it's up to the caller to free the * memory space indicated by @new_mem. * Returns: * !0: Failure. */ int ttm_bo_move_memcpy(struct ttm_buffer_object *bo, struct ttm_operation_ctx *ctx, struct ttm_resource *dst_mem) { struct ttm_device *bdev = bo->bdev; struct ttm_resource_manager *dst_man = ttm_manager_type(bo->bdev, dst_mem->mem_type); struct ttm_tt *ttm = bo->ttm; struct ttm_resource *src_mem = bo->resource; struct ttm_resource_manager *src_man; union { struct ttm_kmap_iter_tt tt; struct ttm_kmap_iter_linear_io io; } _dst_iter, _src_iter; struct ttm_kmap_iter *dst_iter, *src_iter; bool clear; int ret = 0; if (WARN_ON(!src_mem)) return -EINVAL; src_man = ttm_manager_type(bdev, src_mem->mem_type); if (ttm && ((ttm->page_flags & TTM_TT_FLAG_SWAPPED) || dst_man->use_tt)) { ret = ttm_tt_populate(bdev, ttm, ctx); if (ret) return ret; } dst_iter = ttm_kmap_iter_linear_io_init(&_dst_iter.io, bdev, dst_mem); if (PTR_ERR(dst_iter) == -EINVAL && dst_man->use_tt) dst_iter = ttm_kmap_iter_tt_init(&_dst_iter.tt, bo->ttm); if (IS_ERR(dst_iter)) return PTR_ERR(dst_iter); src_iter = ttm_kmap_iter_linear_io_init(&_src_iter.io, bdev, src_mem); if (PTR_ERR(src_iter) == -EINVAL && src_man->use_tt) src_iter = ttm_kmap_iter_tt_init(&_src_iter.tt, bo->ttm); if (IS_ERR(src_iter)) { ret = PTR_ERR(src_iter); goto out_src_iter; } clear = src_iter->ops->maps_tt && (!ttm || !ttm_tt_is_populated(ttm)); if (!(clear && ttm && !(ttm->page_flags & TTM_TT_FLAG_ZERO_ALLOC))) ttm_move_memcpy(clear, PFN_UP(dst_mem->size), dst_iter, src_iter, bdev->memt); if (!src_iter->ops->maps_tt) ttm_kmap_iter_linear_io_fini(&_src_iter.io, bdev, src_mem); ttm_bo_move_sync_cleanup(bo, dst_mem); out_src_iter: if (!dst_iter->ops->maps_tt) ttm_kmap_iter_linear_io_fini(&_dst_iter.io, bdev, dst_mem); return ret; } EXPORT_SYMBOL(ttm_bo_move_memcpy); static void ttm_transfered_destroy(struct ttm_buffer_object *bo) { struct ttm_transfer_obj *fbo; fbo = container_of(bo, struct ttm_transfer_obj, base); dma_resv_fini(&fbo->base.base._resv); ttm_bo_put(fbo->bo); kfree(fbo); } /** * ttm_buffer_object_transfer * * @bo: A pointer to a struct ttm_buffer_object. * @new_obj: A pointer to a pointer to a newly created ttm_buffer_object, * holding the data of @bo with the old placement. * * This is a utility function that may be called after an accelerated move * has been scheduled. A new buffer object is created as a placeholder for * the old data while it's being copied. When that buffer object is idle, * it can be destroyed, releasing the space of the old placement. * Returns: * !0: Failure. */ static int ttm_buffer_object_transfer(struct ttm_buffer_object *bo, struct ttm_buffer_object **new_obj) { struct ttm_transfer_obj *fbo; int ret; fbo = kmalloc(sizeof(*fbo), GFP_KERNEL); if (!fbo) return -ENOMEM; fbo->base = *bo; /** * Fix up members that we shouldn't copy directly: * TODO: Explicit member copy would probably be better here. */ atomic_inc(&ttm_glob.bo_count); drm_vma_node_reset(&fbo->base.base.vma_node); kref_init(&fbo->base.kref); fbo->base.destroy = &ttm_transfered_destroy; fbo->base.pin_count = 0; if (bo->type != ttm_bo_type_sg) fbo->base.base.resv = &fbo->base.base._resv; dma_resv_init(&fbo->base.base._resv); fbo->base.base.dev = NULL; ret = dma_resv_trylock(&fbo->base.base._resv); WARN_ON(!ret); if (fbo->base.resource) { ttm_resource_set_bo(fbo->base.resource, &fbo->base); bo->resource = NULL; ttm_bo_set_bulk_move(&fbo->base, NULL); } else { fbo->base.bulk_move = NULL; } ret = dma_resv_reserve_fences(&fbo->base.base._resv, 1); if (ret) { kfree(fbo); return ret; } ttm_bo_get(bo); fbo->bo = bo; ttm_bo_move_to_lru_tail_unlocked(&fbo->base); *new_obj = &fbo->base; return 0; } /** * ttm_io_prot * * @bo: ttm buffer object * @res: ttm resource object * @tmp: Page protection flag for a normal, cached mapping. * * Utility function that returns the pgprot_t that should be used for * setting up a PTE with the caching model indicated by @c_state. */ pgprot_t ttm_io_prot(struct ttm_buffer_object *bo, struct ttm_resource *res, pgprot_t tmp) { struct ttm_resource_manager *man; enum ttm_caching caching; man = ttm_manager_type(bo->bdev, res->mem_type); if (man->use_tt) { caching = bo->ttm->caching; if (bo->ttm->page_flags & TTM_TT_FLAG_DECRYPTED) tmp = pgprot_decrypted(tmp); } else { caching = res->bus.caching; } return ttm_prot_from_caching(caching, tmp); } EXPORT_SYMBOL(ttm_io_prot); static int ttm_bo_ioremap(struct ttm_buffer_object *bo, unsigned long offset, unsigned long size, struct ttm_bo_kmap_obj *map) { int flags; struct ttm_resource *mem = bo->resource; if (bo->resource->bus.addr) { map->bo_kmap_type = ttm_bo_map_premapped; map->virtual = ((u8 *)bo->resource->bus.addr) + offset; } else { map->bo_kmap_type = ttm_bo_map_iomap; if (mem->bus.caching == ttm_write_combined) flags = BUS_SPACE_MAP_PREFETCHABLE; #ifdef CONFIG_X86 else if (mem->bus.caching == ttm_cached) flags = BUS_SPACE_MAP_CACHEABLE; #endif else flags = 0; if (bus_space_map(bo->bdev->memt, bo->resource->bus.offset + offset, size, BUS_SPACE_MAP_LINEAR | flags, &bo->resource->bus.bsh)) { printf("%s bus_space_map failed\n", __func__); map->virtual = 0; } else { map->virtual = bus_space_vaddr(bo->bdev->memt, bo->resource->bus.bsh); } } return (!map->virtual) ? -ENOMEM : 0; } static int ttm_bo_kmap_ttm(struct ttm_buffer_object *bo, unsigned long start_page, unsigned long num_pages, struct ttm_bo_kmap_obj *map) { struct ttm_resource *mem = bo->resource; struct ttm_operation_ctx ctx = { .interruptible = false, .no_wait_gpu = false }; struct ttm_tt *ttm = bo->ttm; struct ttm_resource_manager *man = ttm_manager_type(bo->bdev, bo->resource->mem_type); pgprot_t prot; int ret; BUG_ON(!ttm); ret = ttm_tt_populate(bo->bdev, ttm, &ctx); if (ret) return ret; if (num_pages == 1 && ttm->caching == ttm_cached && !(man->use_tt && (ttm->page_flags & TTM_TT_FLAG_DECRYPTED))) { /* * We're mapping a single page, and the desired * page protection is consistent with the bo. */ map->bo_kmap_type = ttm_bo_map_kmap; map->page = ttm->pages[start_page]; map->virtual = kmap(map->page); } else { /* * We need to use vmap to get the desired page protection * or to make the buffer object look contiguous. */ prot = ttm_io_prot(bo, mem, PAGE_KERNEL); map->bo_kmap_type = ttm_bo_map_vmap; map->virtual = vmap(ttm->pages + start_page, num_pages, 0, prot); } return (!map->virtual) ? -ENOMEM : 0; } /** * ttm_bo_kmap * * @bo: The buffer object. * @start_page: The first page to map. * @num_pages: Number of pages to map. * @map: pointer to a struct ttm_bo_kmap_obj representing the map. * * Sets up a kernel virtual mapping, using ioremap, vmap or kmap to the * data in the buffer object. The ttm_kmap_obj_virtual function can then be * used to obtain a virtual address to the data. * * Returns * -ENOMEM: Out of memory. * -EINVAL: Invalid range. */ int ttm_bo_kmap(struct ttm_buffer_object *bo, unsigned long start_page, unsigned long num_pages, struct ttm_bo_kmap_obj *map) { unsigned long offset, size; int ret; map->virtual = NULL; map->bo = bo; if (num_pages > PFN_UP(bo->resource->size)) return -EINVAL; if ((start_page + num_pages) > PFN_UP(bo->resource->size)) return -EINVAL; ret = ttm_mem_io_reserve(bo->bdev, bo->resource); if (ret) return ret; if (!bo->resource->bus.is_iomem) { return ttm_bo_kmap_ttm(bo, start_page, num_pages, map); } else { offset = start_page << PAGE_SHIFT; size = num_pages << PAGE_SHIFT; return ttm_bo_ioremap(bo, offset, size, map); } } EXPORT_SYMBOL(ttm_bo_kmap); /** * ttm_bo_kunmap * * @map: Object describing the map to unmap. * * Unmaps a kernel map set up by ttm_bo_kmap. */ void ttm_bo_kunmap(struct ttm_bo_kmap_obj *map) { if (!map->virtual) return; switch (map->bo_kmap_type) { case ttm_bo_map_iomap: bus_space_unmap(map->bo->bdev->memt, map->bo->resource->bus.bsh, map->bo->resource->size); break; case ttm_bo_map_vmap: vunmap(map->virtual, map->bo->resource->size); break; case ttm_bo_map_kmap: kunmap_va(map->virtual); break; case ttm_bo_map_premapped: break; default: BUG(); } ttm_mem_io_free(map->bo->bdev, map->bo->resource); map->virtual = NULL; map->page = NULL; } EXPORT_SYMBOL(ttm_bo_kunmap); /** * ttm_bo_vmap * * @bo: The buffer object. * @map: pointer to a struct iosys_map representing the map. * * Sets up a kernel virtual mapping, using ioremap or vmap to the * data in the buffer object. The parameter @map returns the virtual * address as struct iosys_map. Unmap the buffer with ttm_bo_vunmap(). * * Returns * -ENOMEM: Out of memory. * -EINVAL: Invalid range. */ int ttm_bo_vmap(struct ttm_buffer_object *bo, struct iosys_map *map) { int flags; struct ttm_resource *mem = bo->resource; int ret; dma_resv_assert_held(bo->base.resv); ret = ttm_mem_io_reserve(bo->bdev, mem); if (ret) return ret; if (mem->bus.is_iomem) { void __iomem *vaddr_iomem; if (mem->bus.addr) vaddr_iomem = (void __iomem *)mem->bus.addr; else { if (mem->bus.caching == ttm_write_combined) flags = BUS_SPACE_MAP_PREFETCHABLE; #ifdef CONFIG_X86 else if (mem->bus.caching == ttm_cached) flags = BUS_SPACE_MAP_CACHEABLE; #endif else flags = 0; if (bus_space_map(bo->bdev->memt, mem->bus.offset, bo->base.size, BUS_SPACE_MAP_LINEAR | flags, &mem->bus.bsh)) { printf("%s bus_space_map failed\n", __func__); return -ENOMEM; } vaddr_iomem = bus_space_vaddr(bo->bdev->memt, mem->bus.bsh); } if (!vaddr_iomem) return -ENOMEM; iosys_map_set_vaddr_iomem(map, vaddr_iomem); } else { struct ttm_operation_ctx ctx = { .interruptible = false, .no_wait_gpu = false }; struct ttm_tt *ttm = bo->ttm; pgprot_t prot; void *vaddr; ret = ttm_tt_populate(bo->bdev, ttm, &ctx); if (ret) return ret; /* * We need to use vmap to get the desired page protection * or to make the buffer object look contiguous. */ prot = ttm_io_prot(bo, mem, PAGE_KERNEL); vaddr = vmap(ttm->pages, ttm->num_pages, 0, prot); if (!vaddr) return -ENOMEM; iosys_map_set_vaddr(map, vaddr); } return 0; } EXPORT_SYMBOL(ttm_bo_vmap); /** * ttm_bo_vunmap * * @bo: The buffer object. * @map: Object describing the map to unmap. * * Unmaps a kernel map set up by ttm_bo_vmap(). */ void ttm_bo_vunmap(struct ttm_buffer_object *bo, struct iosys_map *map) { struct ttm_resource *mem = bo->resource; dma_resv_assert_held(bo->base.resv); if (iosys_map_is_null(map)) return; if (!map->is_iomem) vunmap(map->vaddr, bo->base.size); else if (!mem->bus.addr) bus_space_unmap(bo->bdev->memt, mem->bus.bsh, bo->base.size); iosys_map_clear(map); ttm_mem_io_free(bo->bdev, bo->resource); } EXPORT_SYMBOL(ttm_bo_vunmap); static int ttm_bo_wait_free_node(struct ttm_buffer_object *bo, bool dst_use_tt) { long ret; ret = dma_resv_wait_timeout(bo->base.resv, DMA_RESV_USAGE_BOOKKEEP, false, 15 * HZ); if (ret == 0) return -EBUSY; if (ret < 0) return ret; if (!dst_use_tt) ttm_bo_tt_destroy(bo); ttm_resource_free(bo, &bo->resource); return 0; } static int ttm_bo_move_to_ghost(struct ttm_buffer_object *bo, struct dma_fence *fence, bool dst_use_tt) { struct ttm_buffer_object *ghost_obj; int ret; /** * This should help pipeline ordinary buffer moves. * * Hang old buffer memory on a new buffer object, * and leave it to be released when the GPU * operation has completed. */ ret = ttm_buffer_object_transfer(bo, &ghost_obj); if (ret) return ret; dma_resv_add_fence(&ghost_obj->base._resv, fence, DMA_RESV_USAGE_KERNEL); /** * If we're not moving to fixed memory, the TTM object * needs to stay alive. Otherwhise hang it on the ghost * bo to be unbound and destroyed. */ if (dst_use_tt) ghost_obj->ttm = NULL; else bo->ttm = NULL; dma_resv_unlock(&ghost_obj->base._resv); ttm_bo_put(ghost_obj); return 0; } static void ttm_bo_move_pipeline_evict(struct ttm_buffer_object *bo, struct dma_fence *fence) { struct ttm_device *bdev = bo->bdev; struct ttm_resource_manager *from; from = ttm_manager_type(bdev, bo->resource->mem_type); /** * BO doesn't have a TTM we need to bind/unbind. Just remember * this eviction and free up the allocation */ spin_lock(&from->move_lock); if (!from->move || dma_fence_is_later(fence, from->move)) { dma_fence_put(from->move); from->move = dma_fence_get(fence); } spin_unlock(&from->move_lock); ttm_resource_free(bo, &bo->resource); } /** * ttm_bo_move_accel_cleanup - cleanup helper for hw copies * * @bo: A pointer to a struct ttm_buffer_object. * @fence: A fence object that signals when moving is complete. * @evict: This is an evict move. Don't return until the buffer is idle. * @pipeline: evictions are to be pipelined. * @new_mem: struct ttm_resource indicating where to move. * * Accelerated move function to be called when an accelerated move * has been scheduled. The function will create a new temporary buffer object * representing the old placement, and put the sync object on both buffer * objects. After that the newly created buffer object is unref'd to be * destroyed when the move is complete. This will help pipeline * buffer moves. */ int ttm_bo_move_accel_cleanup(struct ttm_buffer_object *bo, struct dma_fence *fence, bool evict, bool pipeline, struct ttm_resource *new_mem) { struct ttm_device *bdev = bo->bdev; struct ttm_resource_manager *from = ttm_manager_type(bdev, bo->resource->mem_type); struct ttm_resource_manager *man = ttm_manager_type(bdev, new_mem->mem_type); int ret = 0; dma_resv_add_fence(bo->base.resv, fence, DMA_RESV_USAGE_KERNEL); if (!evict) ret = ttm_bo_move_to_ghost(bo, fence, man->use_tt); else if (!from->use_tt && pipeline) ttm_bo_move_pipeline_evict(bo, fence); else ret = ttm_bo_wait_free_node(bo, man->use_tt); if (ret) return ret; ttm_bo_assign_mem(bo, new_mem); return 0; } EXPORT_SYMBOL(ttm_bo_move_accel_cleanup); /** * ttm_bo_move_sync_cleanup - cleanup by waiting for the move to finish * * @bo: A pointer to a struct ttm_buffer_object. * @new_mem: struct ttm_resource indicating where to move. * * Special case of ttm_bo_move_accel_cleanup where the bo is guaranteed * by the caller to be idle. Typically used after memcpy buffer moves. */ void ttm_bo_move_sync_cleanup(struct ttm_buffer_object *bo, struct ttm_resource *new_mem) { struct ttm_device *bdev = bo->bdev; struct ttm_resource_manager *man = ttm_manager_type(bdev, new_mem->mem_type); int ret; ret = ttm_bo_wait_free_node(bo, man->use_tt); if (WARN_ON(ret)) return; ttm_bo_assign_mem(bo, new_mem); } EXPORT_SYMBOL(ttm_bo_move_sync_cleanup); /** * ttm_bo_pipeline_gutting - purge the contents of a bo * @bo: The buffer object * * Purge the contents of a bo, async if the bo is not idle. * After a successful call, the bo is left unpopulated in * system placement. The function may wait uninterruptible * for idle on OOM. * * Return: 0 if successful, negative error code on failure. */ int ttm_bo_pipeline_gutting(struct ttm_buffer_object *bo) { struct ttm_buffer_object *ghost; struct ttm_tt *ttm; int ret; /* If already idle, no need for ghost object dance. */ if (dma_resv_test_signaled(bo->base.resv, DMA_RESV_USAGE_BOOKKEEP)) { if (!bo->ttm) { /* See comment below about clearing. */ ret = ttm_tt_create(bo, true); if (ret) return ret; } else { ttm_tt_unpopulate(bo->bdev, bo->ttm); if (bo->type == ttm_bo_type_device) ttm_tt_mark_for_clear(bo->ttm); } ttm_resource_free(bo, &bo->resource); return 0; } /* * We need an unpopulated ttm_tt after giving our current one, * if any, to the ghost object. And we can't afford to fail * creating one *after* the operation. If the bo subsequently gets * resurrected, make sure it's cleared (if ttm_bo_type_device) * to avoid leaking sensitive information to user-space. */ ttm = bo->ttm; bo->ttm = NULL; ret = ttm_tt_create(bo, true); swap(bo->ttm, ttm); if (ret) return ret; ret = ttm_buffer_object_transfer(bo, &ghost); if (ret) goto error_destroy_tt; ret = dma_resv_copy_fences(&ghost->base._resv, bo->base.resv); /* Last resort, wait for the BO to be idle when we are OOM */ if (ret) { dma_resv_wait_timeout(bo->base.resv, DMA_RESV_USAGE_BOOKKEEP, false, MAX_SCHEDULE_TIMEOUT); } dma_resv_unlock(&ghost->base._resv); ttm_bo_put(ghost); bo->ttm = ttm; return 0; error_destroy_tt: ttm_tt_destroy(bo->bdev, ttm); return ret; }