/* $OpenBSD: agtimer.c,v 1.18 2021/03/11 11:16:56 jsg Exp $ */ /* * Copyright (c) 2011 Dale Rahn * Copyright (c) 2013 Patrick Wildt * * Permission to use, copy, modify, and distribute this software for any * purpose with or without fee is hereby granted, provided that the above * copyright notice and this permission notice appear in all copies. * * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. */ #include #include #include #include #include #include #include #include #include #include #include #include #include /* registers */ #define GTIMER_CNTV_CTL_ENABLE (1 << 0) #define GTIMER_CNTV_CTL_IMASK (1 << 1) #define GTIMER_CNTV_CTL_ISTATUS (1 << 2) #define TIMER_FREQUENCY 24 * 1000 * 1000 /* ARM core clock */ int32_t agtimer_frequency = TIMER_FREQUENCY; u_int agtimer_get_timecount(struct timecounter *); static struct timecounter agtimer_timecounter = { .tc_get_timecount = agtimer_get_timecount, .tc_poll_pps = NULL, .tc_counter_mask = 0xffffffff, .tc_frequency = 0, .tc_name = "agtimer", .tc_quality = 0, .tc_priv = NULL, .tc_user = TC_AGTIMER, }; struct agtimer_pcpu_softc { uint64_t pc_nexttickevent; uint64_t pc_nextstatevent; u_int32_t pc_ticks_err_sum; }; struct agtimer_softc { struct device sc_dev; int sc_node; struct agtimer_pcpu_softc sc_pstat[MAXCPUS]; u_int32_t sc_ticks_err_cnt; u_int32_t sc_ticks_per_second; u_int32_t sc_ticks_per_intr; u_int32_t sc_statvar; u_int32_t sc_statmin; #ifdef AMPTIMER_DEBUG struct evcount sc_clk_count; struct evcount sc_stat_count; #endif void *sc_ih; }; int agtimer_match(struct device *, void *, void *); void agtimer_attach(struct device *, struct device *, void *); uint64_t agtimer_readcnt64(void); int agtimer_intr(void *); void agtimer_cpu_initclocks(void); void agtimer_delay(u_int); void agtimer_setstatclockrate(int stathz); void agtimer_set_clockrate(int32_t new_frequency); void agtimer_startclock(void); struct cfattach agtimer_ca = { sizeof (struct agtimer_softc), agtimer_match, agtimer_attach }; struct cfdriver agtimer_cd = { NULL, "agtimer", DV_DULL }; uint64_t agtimer_readcnt64(void) { uint64_t val0, val1; /* * Work around Cortex-A73 errata 858921, where there is a * one-cycle window where the read might return the old value * for the low 32 bits and the new value for the high 32 bits * upon roll-over of the low 32 bits. */ __asm volatile("isb" ::: "memory"); __asm volatile("mrs %x0, CNTVCT_EL0" : "=r" (val0)); __asm volatile("mrs %x0, CNTVCT_EL0" : "=r" (val1)); return ((val0 ^ val1) & 0x100000000ULL) ? val0 : val1; } static inline uint64_t agtimer_get_freq(void) { uint64_t val; __asm volatile("mrs %x0, CNTFRQ_EL0" : "=r" (val)); return (val); } static inline int agtimer_get_ctrl(void) { uint32_t val; __asm volatile("mrs %x0, CNTV_CTL_EL0" : "=r" (val)); return (val); } static inline int agtimer_set_ctrl(uint32_t val) { __asm volatile("msr CNTV_CTL_EL0, %x0" :: "r" (val)); __asm volatile("isb" ::: "memory"); return (0); } static inline int agtimer_set_tval(uint32_t val) { __asm volatile("msr CNTV_TVAL_EL0, %x0" :: "r" (val)); __asm volatile("isb" ::: "memory"); return (0); } int agtimer_match(struct device *parent, void *cfdata, void *aux) { struct fdt_attach_args *faa = (struct fdt_attach_args *)aux; return (OF_is_compatible(faa->fa_node, "arm,armv7-timer") || OF_is_compatible(faa->fa_node, "arm,armv8-timer")); } void agtimer_attach(struct device *parent, struct device *self, void *aux) { struct agtimer_softc *sc = (struct agtimer_softc *)self; struct fdt_attach_args *faa = aux; sc->sc_node = faa->fa_node; if (agtimer_get_freq() != 0) agtimer_frequency = agtimer_get_freq(); agtimer_frequency = OF_getpropint(sc->sc_node, "clock-frequency", agtimer_frequency); sc->sc_ticks_per_second = agtimer_frequency; printf(": %d kHz\n", sc->sc_ticks_per_second / 1000); #ifdef AMPTIMER_DEBUG evcount_attach(&sc->sc_clk_count, "clock", NULL); evcount_attach(&sc->sc_stat_count, "stat", NULL); #endif /* * private timer and interrupts not enabled until * timer configures */ arm_clock_register(agtimer_cpu_initclocks, agtimer_delay, agtimer_setstatclockrate, agtimer_startclock); agtimer_timecounter.tc_frequency = sc->sc_ticks_per_second; agtimer_timecounter.tc_priv = sc; tc_init(&agtimer_timecounter); } u_int agtimer_get_timecount(struct timecounter *tc) { uint64_t val; /* * No need to work around Cortex-A73 errata 858921 since we * only look at the low 32 bits here. */ __asm volatile("isb" ::: "memory"); __asm volatile("mrs %x0, CNTVCT_EL0" : "=r" (val)); return (val & 0xffffffff); } int agtimer_intr(void *frame) { struct agtimer_softc *sc = agtimer_cd.cd_devs[0]; struct agtimer_pcpu_softc *pc = &sc->sc_pstat[CPU_INFO_UNIT(curcpu())]; uint64_t now; uint64_t nextevent; uint32_t r; #if defined(USE_GTIMER_CMP) int skip = 1; #else int64_t delay; #endif int rc = 0; /* * DSR - I know that the tick timer is 64 bits, but the following * code deals with rollover, so there is no point in dealing * with the 64 bit math, just let the 32 bit rollover * do the right thing */ now = agtimer_readcnt64(); while (pc->pc_nexttickevent <= now) { pc->pc_nexttickevent += sc->sc_ticks_per_intr; pc->pc_ticks_err_sum += sc->sc_ticks_err_cnt; /* looping a few times is faster than divide */ while (pc->pc_ticks_err_sum > hz) { pc->pc_nexttickevent += 1; pc->pc_ticks_err_sum -= hz; } #ifdef AMPTIMER_DEBUG sc->sc_clk_count.ec_count++; #endif rc = 1; hardclock(frame); } while (pc->pc_nextstatevent <= now) { do { r = random() & (sc->sc_statvar -1); } while (r == 0); /* random == 0 not allowed */ pc->pc_nextstatevent += sc->sc_statmin + r; /* XXX - correct nextstatevent? */ #ifdef AMPTIMER_DEBUG sc->sc_stat_count.ec_count++; #endif rc = 1; statclock(frame); } if (pc->pc_nexttickevent < pc->pc_nextstatevent) nextevent = pc->pc_nexttickevent; else nextevent = pc->pc_nextstatevent; delay = nextevent - now; if (delay < 0) delay = 1; agtimer_set_tval(delay); return (rc); } void agtimer_set_clockrate(int32_t new_frequency) { struct agtimer_softc *sc = agtimer_cd.cd_devs[0]; agtimer_frequency = new_frequency; if (sc == NULL) return; sc->sc_ticks_per_second = agtimer_frequency; agtimer_timecounter.tc_frequency = sc->sc_ticks_per_second; printf("agtimer0: adjusting clock: new tick rate %d kHz\n", sc->sc_ticks_per_second / 1000); } void agtimer_cpu_initclocks(void) { struct agtimer_softc *sc = agtimer_cd.cd_devs[0]; struct agtimer_pcpu_softc *pc = &sc->sc_pstat[CPU_INFO_UNIT(curcpu())]; uint32_t reg; uint64_t next; uint64_t kctl; stathz = hz; profhz = hz * 10; if (sc->sc_ticks_per_second != agtimer_frequency) { agtimer_set_clockrate(agtimer_frequency); } agtimer_setstatclockrate(stathz); sc->sc_ticks_per_intr = sc->sc_ticks_per_second / hz; sc->sc_ticks_err_cnt = sc->sc_ticks_per_second % hz; pc->pc_ticks_err_sum = 0; /* configure virtual timer interrupt */ sc->sc_ih = arm_intr_establish_fdt_idx(sc->sc_node, 2, IPL_CLOCK|IPL_MPSAFE, agtimer_intr, NULL, "tick"); next = agtimer_readcnt64() + sc->sc_ticks_per_intr; pc->pc_nexttickevent = pc->pc_nextstatevent = next; reg = agtimer_get_ctrl(); reg &= ~GTIMER_CNTV_CTL_IMASK; reg |= GTIMER_CNTV_CTL_ENABLE; agtimer_set_tval(sc->sc_ticks_per_second); agtimer_set_ctrl(reg); /* enable userland access to virtual counter */ kctl = READ_SPECIALREG(CNTKCTL_EL1); WRITE_SPECIALREG(CNTKCTL_EL1, kctl | CNTKCTL_EL0VCTEN); } void agtimer_delay(u_int usecs) { uint64_t clock, oclock, delta, delaycnt; uint64_t csec, usec; volatile int j; if (usecs > (0x80000000 / agtimer_frequency)) { csec = usecs / 10000; usec = usecs % 10000; delaycnt = (agtimer_frequency / 100) * csec + (agtimer_frequency / 100) * usec / 10000; } else { delaycnt = agtimer_frequency * usecs / 1000000; } if (delaycnt <= 1) for (j = 100; j > 0; j--) ; oclock = agtimer_readcnt64(); while (1) { for (j = 100; j > 0; j--) ; clock = agtimer_readcnt64(); delta = clock - oclock; if (delta > delaycnt) break; } } void agtimer_setstatclockrate(int newhz) { struct agtimer_softc *sc = agtimer_cd.cd_devs[0]; int minint, statint; int s; s = splclock(); statint = sc->sc_ticks_per_second / newhz; /* calculate largest 2^n which is smaller that just over half statint */ sc->sc_statvar = 0x40000000; /* really big power of two */ minint = statint / 2 + 100; while (sc->sc_statvar > minint) sc->sc_statvar >>= 1; sc->sc_statmin = statint - (sc->sc_statvar >> 1); splx(s); /* * XXX this allows the next stat timer to occur then it switches * to the new frequency. Rather than switching instantly. */ } void agtimer_startclock(void) { struct agtimer_softc *sc = agtimer_cd.cd_devs[0]; struct agtimer_pcpu_softc *pc = &sc->sc_pstat[CPU_INFO_UNIT(curcpu())]; uint64_t nextevent; uint64_t kctl; uint32_t reg; nextevent = agtimer_readcnt64() + sc->sc_ticks_per_intr; pc->pc_nexttickevent = pc->pc_nextstatevent = nextevent; arm_intr_route(sc->sc_ih, 1, curcpu()); reg = agtimer_get_ctrl(); reg &= ~GTIMER_CNTV_CTL_IMASK; reg |= GTIMER_CNTV_CTL_ENABLE; agtimer_set_tval(sc->sc_ticks_per_second); agtimer_set_ctrl(reg); /* enable userland access to virtual counter */ kctl = READ_SPECIALREG(CNTKCTL_EL1); WRITE_SPECIALREG(CNTKCTL_EL1, kctl | CNTKCTL_EL0VCTEN); } void agtimer_init(void) { uint64_t cntfrq = 0; /* XXX: Check for Generic Timer support. */ cntfrq = agtimer_get_freq(); if (cntfrq != 0) { agtimer_frequency = cntfrq; arm_clock_register(NULL, agtimer_delay, NULL, NULL); } }