/* $OpenBSD: bn_mul.c,v 1.31 2023/02/13 04:25:37 jsing Exp $ */ /* Copyright (C) 1995-1998 Eric Young (eay@cryptsoft.com) * All rights reserved. * * This package is an SSL implementation written * by Eric Young (eay@cryptsoft.com). * The implementation was written so as to conform with Netscapes SSL. * * This library is free for commercial and non-commercial use as long as * the following conditions are aheared to. The following conditions * apply to all code found in this distribution, be it the RC4, RSA, * lhash, DES, etc., code; not just the SSL code. The SSL documentation * included with this distribution is covered by the same copyright terms * except that the holder is Tim Hudson (tjh@cryptsoft.com). * * Copyright remains Eric Young's, and as such any Copyright notices in * the code are not to be removed. * If this package is used in a product, Eric Young should be given attribution * as the author of the parts of the library used. * This can be in the form of a textual message at program startup or * in documentation (online or textual) provided with the package. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 3. All advertising materials mentioning features or use of this software * must display the following acknowledgement: * "This product includes cryptographic software written by * Eric Young (eay@cryptsoft.com)" * The word 'cryptographic' can be left out if the rouines from the library * being used are not cryptographic related :-). * 4. If you include any Windows specific code (or a derivative thereof) from * the apps directory (application code) you must include an acknowledgement: * "This product includes software written by Tim Hudson (tjh@cryptsoft.com)" * * THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. * * The licence and distribution terms for any publically available version or * derivative of this code cannot be changed. i.e. this code cannot simply be * copied and put under another distribution licence * [including the GNU Public Licence.] */ #include #include #include #include #include "bn_arch.h" #include "bn_local.h" #ifndef HAVE_BN_MUL_ADD_WORDS #if defined(BN_LLONG) || defined(BN_UMULT_HIGH) BN_ULONG bn_mul_add_words(BN_ULONG *rp, const BN_ULONG *ap, int num, BN_ULONG w) { BN_ULONG c1 = 0; assert(num >= 0); if (num <= 0) return (c1); #ifndef OPENSSL_SMALL_FOOTPRINT while (num & ~3) { mul_add(rp[0], ap[0], w, c1); mul_add(rp[1], ap[1], w, c1); mul_add(rp[2], ap[2], w, c1); mul_add(rp[3], ap[3], w, c1); ap += 4; rp += 4; num -= 4; } #endif while (num) { mul_add(rp[0], ap[0], w, c1); ap++; rp++; num--; } return (c1); } #else /* !(defined(BN_LLONG) || defined(BN_UMULT_HIGH)) */ BN_ULONG bn_mul_add_words(BN_ULONG *rp, const BN_ULONG *ap, int num, BN_ULONG w) { BN_ULONG c = 0; BN_ULONG bl, bh; assert(num >= 0); if (num <= 0) return ((BN_ULONG)0); bl = LBITS(w); bh = HBITS(w); #ifndef OPENSSL_SMALL_FOOTPRINT while (num & ~3) { mul_add(rp[0], ap[0], bl, bh, c); mul_add(rp[1], ap[1], bl, bh, c); mul_add(rp[2], ap[2], bl, bh, c); mul_add(rp[3], ap[3], bl, bh, c); ap += 4; rp += 4; num -= 4; } #endif while (num) { mul_add(rp[0], ap[0], bl, bh, c); ap++; rp++; num--; } return (c); } #endif /* !(defined(BN_LLONG) || defined(BN_UMULT_HIGH)) */ #endif #ifndef HAVE_BN_MUL_COMBA4 void bn_mul_comba4(BN_ULONG *r, BN_ULONG *a, BN_ULONG *b) { BN_ULONG c1, c2, c3; c1 = 0; c2 = 0; c3 = 0; mul_add_c(a[0], b[0], c1, c2, c3); r[0] = c1; c1 = 0; mul_add_c(a[0], b[1], c2, c3, c1); mul_add_c(a[1], b[0], c2, c3, c1); r[1] = c2; c2 = 0; mul_add_c(a[2], b[0], c3, c1, c2); mul_add_c(a[1], b[1], c3, c1, c2); mul_add_c(a[0], b[2], c3, c1, c2); r[2] = c3; c3 = 0; mul_add_c(a[0], b[3], c1, c2, c3); mul_add_c(a[1], b[2], c1, c2, c3); mul_add_c(a[2], b[1], c1, c2, c3); mul_add_c(a[3], b[0], c1, c2, c3); r[3] = c1; c1 = 0; mul_add_c(a[3], b[1], c2, c3, c1); mul_add_c(a[2], b[2], c2, c3, c1); mul_add_c(a[1], b[3], c2, c3, c1); r[4] = c2; c2 = 0; mul_add_c(a[2], b[3], c3, c1, c2); mul_add_c(a[3], b[2], c3, c1, c2); r[5] = c3; c3 = 0; mul_add_c(a[3], b[3], c1, c2, c3); r[6] = c1; r[7] = c2; } #endif #ifndef HAVE_BN_MUL_COMBA8 void bn_mul_comba8(BN_ULONG *r, BN_ULONG *a, BN_ULONG *b) { BN_ULONG c1, c2, c3; c1 = 0; c2 = 0; c3 = 0; mul_add_c(a[0], b[0], c1, c2, c3); r[0] = c1; c1 = 0; mul_add_c(a[0], b[1], c2, c3, c1); mul_add_c(a[1], b[0], c2, c3, c1); r[1] = c2; c2 = 0; mul_add_c(a[2], b[0], c3, c1, c2); mul_add_c(a[1], b[1], c3, c1, c2); mul_add_c(a[0], b[2], c3, c1, c2); r[2] = c3; c3 = 0; mul_add_c(a[0], b[3], c1, c2, c3); mul_add_c(a[1], b[2], c1, c2, c3); mul_add_c(a[2], b[1], c1, c2, c3); mul_add_c(a[3], b[0], c1, c2, c3); r[3] = c1; c1 = 0; mul_add_c(a[4], b[0], c2, c3, c1); mul_add_c(a[3], b[1], c2, c3, c1); mul_add_c(a[2], b[2], c2, c3, c1); mul_add_c(a[1], b[3], c2, c3, c1); mul_add_c(a[0], b[4], c2, c3, c1); r[4] = c2; c2 = 0; mul_add_c(a[0], b[5], c3, c1, c2); mul_add_c(a[1], b[4], c3, c1, c2); mul_add_c(a[2], b[3], c3, c1, c2); mul_add_c(a[3], b[2], c3, c1, c2); mul_add_c(a[4], b[1], c3, c1, c2); mul_add_c(a[5], b[0], c3, c1, c2); r[5] = c3; c3 = 0; mul_add_c(a[6], b[0], c1, c2, c3); mul_add_c(a[5], b[1], c1, c2, c3); mul_add_c(a[4], b[2], c1, c2, c3); mul_add_c(a[3], b[3], c1, c2, c3); mul_add_c(a[2], b[4], c1, c2, c3); mul_add_c(a[1], b[5], c1, c2, c3); mul_add_c(a[0], b[6], c1, c2, c3); r[6] = c1; c1 = 0; mul_add_c(a[0], b[7], c2, c3, c1); mul_add_c(a[1], b[6], c2, c3, c1); mul_add_c(a[2], b[5], c2, c3, c1); mul_add_c(a[3], b[4], c2, c3, c1); mul_add_c(a[4], b[3], c2, c3, c1); mul_add_c(a[5], b[2], c2, c3, c1); mul_add_c(a[6], b[1], c2, c3, c1); mul_add_c(a[7], b[0], c2, c3, c1); r[7] = c2; c2 = 0; mul_add_c(a[7], b[1], c3, c1, c2); mul_add_c(a[6], b[2], c3, c1, c2); mul_add_c(a[5], b[3], c3, c1, c2); mul_add_c(a[4], b[4], c3, c1, c2); mul_add_c(a[3], b[5], c3, c1, c2); mul_add_c(a[2], b[6], c3, c1, c2); mul_add_c(a[1], b[7], c3, c1, c2); r[8] = c3; c3 = 0; mul_add_c(a[2], b[7], c1, c2, c3); mul_add_c(a[3], b[6], c1, c2, c3); mul_add_c(a[4], b[5], c1, c2, c3); mul_add_c(a[5], b[4], c1, c2, c3); mul_add_c(a[6], b[3], c1, c2, c3); mul_add_c(a[7], b[2], c1, c2, c3); r[9] = c1; c1 = 0; mul_add_c(a[7], b[3], c2, c3, c1); mul_add_c(a[6], b[4], c2, c3, c1); mul_add_c(a[5], b[5], c2, c3, c1); mul_add_c(a[4], b[6], c2, c3, c1); mul_add_c(a[3], b[7], c2, c3, c1); r[10] = c2; c2 = 0; mul_add_c(a[4], b[7], c3, c1, c2); mul_add_c(a[5], b[6], c3, c1, c2); mul_add_c(a[6], b[5], c3, c1, c2); mul_add_c(a[7], b[4], c3, c1, c2); r[11] = c3; c3 = 0; mul_add_c(a[7], b[5], c1, c2, c3); mul_add_c(a[6], b[6], c1, c2, c3); mul_add_c(a[5], b[7], c1, c2, c3); r[12] = c1; c1 = 0; mul_add_c(a[6], b[7], c2, c3, c1); mul_add_c(a[7], b[6], c2, c3, c1); r[13] = c2; c2 = 0; mul_add_c(a[7], b[7], c3, c1, c2); r[14] = c3; r[15] = c1; } #endif #ifndef HAVE_BN_MUL_WORDS #if defined(BN_LLONG) || defined(BN_UMULT_HIGH) BN_ULONG bn_mul_words(BN_ULONG *rp, const BN_ULONG *ap, int num, BN_ULONG w) { BN_ULONG c1 = 0; assert(num >= 0); if (num <= 0) return (c1); #ifndef OPENSSL_SMALL_FOOTPRINT while (num & ~3) { mul(rp[0], ap[0], w, c1); mul(rp[1], ap[1], w, c1); mul(rp[2], ap[2], w, c1); mul(rp[3], ap[3], w, c1); ap += 4; rp += 4; num -= 4; } #endif while (num) { mul(rp[0], ap[0], w, c1); ap++; rp++; num--; } return (c1); } #else /* !(defined(BN_LLONG) || defined(BN_UMULT_HIGH)) */ BN_ULONG bn_mul_words(BN_ULONG *rp, const BN_ULONG *ap, int num, BN_ULONG w) { BN_ULONG carry = 0; BN_ULONG bl, bh; assert(num >= 0); if (num <= 0) return ((BN_ULONG)0); bl = LBITS(w); bh = HBITS(w); #ifndef OPENSSL_SMALL_FOOTPRINT while (num & ~3) { mul(rp[0], ap[0], bl, bh, carry); mul(rp[1], ap[1], bl, bh, carry); mul(rp[2], ap[2], bl, bh, carry); mul(rp[3], ap[3], bl, bh, carry); ap += 4; rp += 4; num -= 4; } #endif while (num) { mul(rp[0], ap[0], bl, bh, carry); ap++; rp++; num--; } return (carry); } #endif /* !(defined(BN_LLONG) || defined(BN_UMULT_HIGH)) */ #endif #if defined(OPENSSL_NO_ASM) || !defined(OPENSSL_BN_ASM_PART_WORDS) /* * Here follows a specialised variant of bn_sub_words(), which has the property * performing operations on arrays of different sizes. The sizes of those arrays * is expressed through cl, which is the common length (basically, * min(len(a),len(b))), and dl, which is the delta between the two lengths, * calculated as len(a)-len(b). All lengths are the number of BN_ULONGs. For the * operations that require a result array as parameter, it must have the length * cl+abs(dl). */ BN_ULONG bn_sub_part_words(BN_ULONG *r, const BN_ULONG *a, const BN_ULONG *b, int cl, int dl) { BN_ULONG c, t; assert(cl >= 0); c = bn_sub_words(r, a, b, cl); if (dl == 0) return c; r += cl; a += cl; b += cl; if (dl < 0) { for (;;) { t = b[0]; r[0] = (0 - t - c) & BN_MASK2; if (t != 0) c = 1; if (++dl >= 0) break; t = b[1]; r[1] = (0 - t - c) & BN_MASK2; if (t != 0) c = 1; if (++dl >= 0) break; t = b[2]; r[2] = (0 - t - c) & BN_MASK2; if (t != 0) c = 1; if (++dl >= 0) break; t = b[3]; r[3] = (0 - t - c) & BN_MASK2; if (t != 0) c = 1; if (++dl >= 0) break; b += 4; r += 4; } } else { int save_dl = dl; while (c) { t = a[0]; r[0] = (t - c) & BN_MASK2; if (t != 0) c = 0; if (--dl <= 0) break; t = a[1]; r[1] = (t - c) & BN_MASK2; if (t != 0) c = 0; if (--dl <= 0) break; t = a[2]; r[2] = (t - c) & BN_MASK2; if (t != 0) c = 0; if (--dl <= 0) break; t = a[3]; r[3] = (t - c) & BN_MASK2; if (t != 0) c = 0; if (--dl <= 0) break; save_dl = dl; a += 4; r += 4; } if (dl > 0) { if (save_dl > dl) { switch (save_dl - dl) { case 1: r[1] = a[1]; if (--dl <= 0) break; case 2: r[2] = a[2]; if (--dl <= 0) break; case 3: r[3] = a[3]; if (--dl <= 0) break; } a += 4; r += 4; } } if (dl > 0) { for (;;) { r[0] = a[0]; if (--dl <= 0) break; r[1] = a[1]; if (--dl <= 0) break; r[2] = a[2]; if (--dl <= 0) break; r[3] = a[3]; if (--dl <= 0) break; a += 4; r += 4; } } } return c; } #endif void bn_mul_normal(BN_ULONG *r, BN_ULONG *a, int na, BN_ULONG *b, int nb) { BN_ULONG *rr; if (na < nb) { int itmp; BN_ULONG *ltmp; itmp = na; na = nb; nb = itmp; ltmp = a; a = b; b = ltmp; } rr = &(r[na]); if (nb <= 0) { (void)bn_mul_words(r, a, na, 0); return; } else rr[0] = bn_mul_words(r, a, na, b[0]); for (;;) { if (--nb <= 0) return; rr[1] = bn_mul_add_words(&(r[1]), a, na, b[1]); if (--nb <= 0) return; rr[2] = bn_mul_add_words(&(r[2]), a, na, b[2]); if (--nb <= 0) return; rr[3] = bn_mul_add_words(&(r[3]), a, na, b[3]); if (--nb <= 0) return; rr[4] = bn_mul_add_words(&(r[4]), a, na, b[4]); rr += 4; r += 4; b += 4; } } #ifdef BN_RECURSION /* Karatsuba recursive multiplication algorithm * (cf. Knuth, The Art of Computer Programming, Vol. 2) */ /* r is 2*n2 words in size, * a and b are both n2 words in size. * n2 must be a power of 2. * We multiply and return the result. * t must be 2*n2 words in size * We calculate * a[0]*b[0] * a[0]*b[0]+a[1]*b[1]+(a[0]-a[1])*(b[1]-b[0]) * a[1]*b[1] */ /* dnX may not be positive, but n2/2+dnX has to be */ void bn_mul_recursive(BN_ULONG *r, BN_ULONG *a, BN_ULONG *b, int n2, int dna, int dnb, BN_ULONG *t) { int n = n2 / 2, c1, c2; int tna = n + dna, tnb = n + dnb; unsigned int neg, zero; BN_ULONG ln, lo, *p; # ifdef BN_MUL_COMBA # if 0 if (n2 == 4) { bn_mul_comba4(r, a, b); return; } # endif /* Only call bn_mul_comba 8 if n2 == 8 and the * two arrays are complete [steve] */ if (n2 == 8 && dna == 0 && dnb == 0) { bn_mul_comba8(r, a, b); return; } # endif /* BN_MUL_COMBA */ /* Else do normal multiply */ if (n2 < BN_MUL_RECURSIVE_SIZE_NORMAL) { bn_mul_normal(r, a, n2 + dna, b, n2 + dnb); if ((dna + dnb) < 0) memset(&r[2*n2 + dna + dnb], 0, sizeof(BN_ULONG) * -(dna + dnb)); return; } /* r=(a[0]-a[1])*(b[1]-b[0]) */ c1 = bn_cmp_part_words(a, &(a[n]), tna, n - tna); c2 = bn_cmp_part_words(&(b[n]), b,tnb, tnb - n); zero = neg = 0; switch (c1 * 3 + c2) { case -4: bn_sub_part_words(t, &(a[n]), a, tna, tna - n); /* - */ bn_sub_part_words(&(t[n]), b, &(b[n]), tnb, n - tnb); /* - */ break; case -3: zero = 1; break; case -2: bn_sub_part_words(t, &(a[n]), a, tna, tna - n); /* - */ bn_sub_part_words(&(t[n]), &(b[n]), b, tnb, tnb - n); /* + */ neg = 1; break; case -1: case 0: case 1: zero = 1; break; case 2: bn_sub_part_words(t, a, &(a[n]), tna, n - tna); /* + */ bn_sub_part_words(&(t[n]), b, &(b[n]), tnb, n - tnb); /* - */ neg = 1; break; case 3: zero = 1; break; case 4: bn_sub_part_words(t, a, &(a[n]), tna, n - tna); bn_sub_part_words(&(t[n]), &(b[n]), b, tnb, tnb - n); break; } # ifdef BN_MUL_COMBA if (n == 4 && dna == 0 && dnb == 0) /* XXX: bn_mul_comba4 could take extra args to do this well */ { if (!zero) bn_mul_comba4(&(t[n2]), t, &(t[n])); else memset(&(t[n2]), 0, 8 * sizeof(BN_ULONG)); bn_mul_comba4(r, a, b); bn_mul_comba4(&(r[n2]), &(a[n]), &(b[n])); } else if (n == 8 && dna == 0 && dnb == 0) /* XXX: bn_mul_comba8 could take extra args to do this well */ { if (!zero) bn_mul_comba8(&(t[n2]), t, &(t[n])); else memset(&(t[n2]), 0, 16 * sizeof(BN_ULONG)); bn_mul_comba8(r, a, b); bn_mul_comba8(&(r[n2]), &(a[n]), &(b[n])); } else # endif /* BN_MUL_COMBA */ { p = &(t[n2 * 2]); if (!zero) bn_mul_recursive(&(t[n2]), t, &(t[n]), n, 0, 0, p); else memset(&(t[n2]), 0, n2 * sizeof(BN_ULONG)); bn_mul_recursive(r, a, b, n, 0, 0, p); bn_mul_recursive(&(r[n2]), &(a[n]), &(b[n]), n, dna, dnb, p); } /* t[32] holds (a[0]-a[1])*(b[1]-b[0]), c1 is the sign * r[10] holds (a[0]*b[0]) * r[32] holds (b[1]*b[1]) */ c1 = (int)(bn_add_words(t, r, &(r[n2]), n2)); if (neg) /* if t[32] is negative */ { c1 -= (int)(bn_sub_words(&(t[n2]), t, &(t[n2]), n2)); } else { /* Might have a carry */ c1 += (int)(bn_add_words(&(t[n2]), &(t[n2]), t, n2)); } /* t[32] holds (a[0]-a[1])*(b[1]-b[0])+(a[0]*b[0])+(a[1]*b[1]) * r[10] holds (a[0]*b[0]) * r[32] holds (b[1]*b[1]) * c1 holds the carry bits */ c1 += (int)(bn_add_words(&(r[n]), &(r[n]), &(t[n2]), n2)); if (c1) { p = &(r[n + n2]); lo= *p; ln = (lo + c1) & BN_MASK2; *p = ln; /* The overflow will stop before we over write * words we should not overwrite */ if (ln < (BN_ULONG)c1) { do { p++; lo= *p; ln = (lo + 1) & BN_MASK2; *p = ln; } while (ln == 0); } } } /* n+tn is the word length * t needs to be n*4 is size, as does r */ /* tnX may not be negative but less than n */ void bn_mul_part_recursive(BN_ULONG *r, BN_ULONG *a, BN_ULONG *b, int n, int tna, int tnb, BN_ULONG *t) { int i, j, n2 = n * 2; int c1, c2, neg; BN_ULONG ln, lo, *p; if (n < 8) { bn_mul_normal(r, a, n + tna, b, n + tnb); return; } /* r=(a[0]-a[1])*(b[1]-b[0]) */ c1 = bn_cmp_part_words(a, &(a[n]), tna, n - tna); c2 = bn_cmp_part_words(&(b[n]), b, tnb, tnb - n); neg = 0; switch (c1 * 3 + c2) { case -4: bn_sub_part_words(t, &(a[n]), a, tna, tna - n); /* - */ bn_sub_part_words(&(t[n]), b, &(b[n]), tnb, n - tnb); /* - */ break; case -3: /* break; */ case -2: bn_sub_part_words(t, &(a[n]), a, tna, tna - n); /* - */ bn_sub_part_words(&(t[n]), &(b[n]), b, tnb, tnb - n); /* + */ neg = 1; break; case -1: case 0: case 1: /* break; */ case 2: bn_sub_part_words(t, a, &(a[n]), tna, n - tna); /* + */ bn_sub_part_words(&(t[n]), b, &(b[n]), tnb, n - tnb); /* - */ neg = 1; break; case 3: /* break; */ case 4: bn_sub_part_words(t, a, &(a[n]), tna, n - tna); bn_sub_part_words(&(t[n]), &(b[n]), b, tnb, tnb - n); break; } /* The zero case isn't yet implemented here. The speedup would probably be negligible. */ # if 0 if (n == 4) { bn_mul_comba4(&(t[n2]), t, &(t[n])); bn_mul_comba4(r, a, b); bn_mul_normal(&(r[n2]), &(a[n]), tn, &(b[n]), tn); memset(&(r[n2 + tn * 2]), 0, sizeof(BN_ULONG) * (n2 - tn * 2)); } else # endif if (n == 8) { bn_mul_comba8(&(t[n2]), t, &(t[n])); bn_mul_comba8(r, a, b); bn_mul_normal(&(r[n2]), &(a[n]), tna, &(b[n]), tnb); memset(&(r[n2 + tna + tnb]), 0, sizeof(BN_ULONG) * (n2 - tna - tnb)); } else { p = &(t[n2*2]); bn_mul_recursive(&(t[n2]), t, &(t[n]), n, 0, 0, p); bn_mul_recursive(r, a, b, n, 0, 0, p); i = n / 2; /* If there is only a bottom half to the number, * just do it */ if (tna > tnb) j = tna - i; else j = tnb - i; if (j == 0) { bn_mul_recursive(&(r[n2]), &(a[n]), &(b[n]), i, tna - i, tnb - i, p); memset(&(r[n2 + i * 2]), 0, sizeof(BN_ULONG) * (n2 - i * 2)); } else if (j > 0) /* eg, n == 16, i == 8 and tn == 11 */ { bn_mul_part_recursive(&(r[n2]), &(a[n]), &(b[n]), i, tna - i, tnb - i, p); memset(&(r[n2 + tna + tnb]), 0, sizeof(BN_ULONG) * (n2 - tna - tnb)); } else /* (j < 0) eg, n == 16, i == 8 and tn == 5 */ { memset(&(r[n2]), 0, sizeof(BN_ULONG) * n2); if (tna < BN_MUL_RECURSIVE_SIZE_NORMAL && tnb < BN_MUL_RECURSIVE_SIZE_NORMAL) { bn_mul_normal(&(r[n2]), &(a[n]), tna, &(b[n]), tnb); } else { for (;;) { i /= 2; /* these simplified conditions work * exclusively because difference * between tna and tnb is 1 or 0 */ if (i < tna || i < tnb) { bn_mul_part_recursive(&(r[n2]), &(a[n]), &(b[n]), i, tna - i, tnb - i, p); break; } else if (i == tna || i == tnb) { bn_mul_recursive(&(r[n2]), &(a[n]), &(b[n]), i, tna - i, tnb - i, p); break; } } } } } /* t[32] holds (a[0]-a[1])*(b[1]-b[0]), c1 is the sign * r[10] holds (a[0]*b[0]) * r[32] holds (b[1]*b[1]) */ c1 = (int)(bn_add_words(t, r,&(r[n2]), n2)); if (neg) /* if t[32] is negative */ { c1 -= (int)(bn_sub_words(&(t[n2]), t,&(t[n2]), n2)); } else { /* Might have a carry */ c1 += (int)(bn_add_words(&(t[n2]), &(t[n2]), t, n2)); } /* t[32] holds (a[0]-a[1])*(b[1]-b[0])+(a[0]*b[0])+(a[1]*b[1]) * r[10] holds (a[0]*b[0]) * r[32] holds (b[1]*b[1]) * c1 holds the carry bits */ c1 += (int)(bn_add_words(&(r[n]), &(r[n]), &(t[n2]), n2)); if (c1) { p = &(r[n + n2]); lo= *p; ln = (lo + c1)&BN_MASK2; *p = ln; /* The overflow will stop before we over write * words we should not overwrite */ if (ln < (BN_ULONG)c1) { do { p++; lo= *p; ln = (lo + 1) & BN_MASK2; *p = ln; } while (ln == 0); } } } #endif /* BN_RECURSION */ #ifndef HAVE_BN_MUL #ifndef BN_RECURSION int bn_mul(BIGNUM *r, const BIGNUM *a, const BIGNUM *b, int rn, BN_CTX *ctx) { bn_mul_normal(r->d, a->d, a->top, b->d, b->top); return 1; } #else /* BN_RECURSION */ int bn_mul(BIGNUM *r, const BIGNUM *a, const BIGNUM *b, int rn, BN_CTX *ctx) { BIGNUM *t = NULL; int al, bl, i, k; int j = 0; int ret = 0; BN_CTX_start(ctx); al = a->top; bl = b->top; i = al - bl; if ((al >= BN_MULL_SIZE_NORMAL) && (bl >= BN_MULL_SIZE_NORMAL)) { if (i >= -1 && i <= 1) { /* Find out the power of two lower or equal to the longest of the two numbers */ if (i >= 0) { j = BN_num_bits_word((BN_ULONG)al); } if (i == -1) { j = BN_num_bits_word((BN_ULONG)bl); } j = 1 << (j - 1); assert(j <= al || j <= bl); k = j + j; if ((t = BN_CTX_get(ctx)) == NULL) goto err; if (al > j || bl > j) { if (!bn_wexpand(t, k * 4)) goto err; if (!bn_wexpand(r, k * 4)) goto err; bn_mul_part_recursive(r->d, a->d, b->d, j, al - j, bl - j, t->d); } else /* al <= j || bl <= j */ { if (!bn_wexpand(t, k * 2)) goto err; if (!bn_wexpand(r, k * 2)) goto err; bn_mul_recursive(r->d, a->d, b->d, j, al - j, bl - j, t->d); } r->top = rn; goto end; } #if 0 if (i == 1 && !BN_get_flags(b, BN_FLG_STATIC_DATA)) { BIGNUM *tmp_bn = (BIGNUM *)b; if (!bn_wexpand(tmp_bn, al)) goto err; tmp_bn->d[bl] = 0; bl++; i--; } else if (i == -1 && !BN_get_flags(a, BN_FLG_STATIC_DATA)) { BIGNUM *tmp_bn = (BIGNUM *)a; if (!bn_wexpand(tmp_bn, bl)) goto err; tmp_bn->d[al] = 0; al++; i++; } if (i == 0) { /* symmetric and > 4 */ /* 16 or larger */ j = BN_num_bits_word((BN_ULONG)al); j = 1 << (j - 1); k = j + j; if ((t = BN_CTX_get(ctx)) == NULL) goto err; if (al == j) /* exact multiple */ { if (!bn_wexpand(t, k * 2)) goto err; if (!bn_wexpand(r, k * 2)) goto err; bn_mul_recursive(r->d, a->d, b->d, al, t->d); } else { if (!bn_wexpand(t, k * 4)) goto err; if (!bn_wexpand(r, k * 4)) goto err; bn_mul_part_recursive(r->d, a->d, b->d, al - j, j, t->d); } r->top = top; goto end; } #endif } bn_mul_normal(r->d, a->d, al, b->d, bl); end: ret = 1; err: BN_CTX_end(ctx); return ret; } #endif /* BN_RECURSION */ #endif /* HAVE_BN_MUL */ int BN_mul(BIGNUM *r, const BIGNUM *a, const BIGNUM *b, BN_CTX *ctx) { BIGNUM *rr; int rn; int ret = 0; BN_CTX_start(ctx); if (BN_is_zero(a) || BN_is_zero(b)) { BN_zero(r); goto done; } rr = r; if (rr == a || rr == b) rr = BN_CTX_get(ctx); if (rr == NULL) goto err; rn = a->top + b->top; if (rn < a->top) goto err; if (!bn_wexpand(rr, rn)) goto err; if (a->top == 4 && b->top == 4) { bn_mul_comba4(rr->d, a->d, b->d); } else if (a->top == 8 && b->top == 8) { bn_mul_comba8(rr->d, a->d, b->d); } else { if (!bn_mul(rr, a, b, rn, ctx)) goto err; } rr->top = rn; bn_correct_top(rr); BN_set_negative(rr, a->neg ^ b->neg); if (r != rr) BN_copy(r, rr); done: ret = 1; err: BN_CTX_end(ctx); return ret; }