//===-- SparcInstrInfo.cpp - Sparc Instruction Information ----------------===// // // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. // See https://llvm.org/LICENSE.txt for license information. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // //===----------------------------------------------------------------------===// // // This file contains the Sparc implementation of the TargetInstrInfo class. // //===----------------------------------------------------------------------===// #include "SparcInstrInfo.h" #include "Sparc.h" #include "SparcMachineFunctionInfo.h" #include "SparcSubtarget.h" #include "llvm/ADT/STLExtras.h" #include "llvm/ADT/SmallVector.h" #include "llvm/CodeGen/MachineFrameInfo.h" #include "llvm/CodeGen/MachineInstrBuilder.h" #include "llvm/CodeGen/MachineMemOperand.h" #include "llvm/CodeGen/MachineRegisterInfo.h" #include "llvm/MC/TargetRegistry.h" #include "llvm/Support/ErrorHandling.h" using namespace llvm; #define GET_INSTRINFO_CTOR_DTOR #include "SparcGenInstrInfo.inc" static cl::opt BPccDisplacementBits( "sparc-bpcc-offset-bits", cl::Hidden, cl::init(19), cl::desc("Restrict range of BPcc/FBPfcc instructions (DEBUG)")); // Pin the vtable to this file. void SparcInstrInfo::anchor() {} SparcInstrInfo::SparcInstrInfo(SparcSubtarget &ST) : SparcGenInstrInfo(SP::ADJCALLSTACKDOWN, SP::ADJCALLSTACKUP), RI(), Subtarget(ST) {} /// isLoadFromStackSlot - If the specified machine instruction is a direct /// load from a stack slot, return the virtual or physical register number of /// the destination along with the FrameIndex of the loaded stack slot. If /// not, return 0. This predicate must return 0 if the instruction has /// any side effects other than loading from the stack slot. unsigned SparcInstrInfo::isLoadFromStackSlot(const MachineInstr &MI, int &FrameIndex) const { if (MI.getOpcode() == SP::LDri || MI.getOpcode() == SP::LDXri || MI.getOpcode() == SP::LDFri || MI.getOpcode() == SP::LDDFri || MI.getOpcode() == SP::LDQFri) { if (MI.getOperand(1).isFI() && MI.getOperand(2).isImm() && MI.getOperand(2).getImm() == 0) { FrameIndex = MI.getOperand(1).getIndex(); return MI.getOperand(0).getReg(); } } return 0; } /// isStoreToStackSlot - If the specified machine instruction is a direct /// store to a stack slot, return the virtual or physical register number of /// the source reg along with the FrameIndex of the loaded stack slot. If /// not, return 0. This predicate must return 0 if the instruction has /// any side effects other than storing to the stack slot. unsigned SparcInstrInfo::isStoreToStackSlot(const MachineInstr &MI, int &FrameIndex) const { if (MI.getOpcode() == SP::STri || MI.getOpcode() == SP::STXri || MI.getOpcode() == SP::STFri || MI.getOpcode() == SP::STDFri || MI.getOpcode() == SP::STQFri) { if (MI.getOperand(0).isFI() && MI.getOperand(1).isImm() && MI.getOperand(1).getImm() == 0) { FrameIndex = MI.getOperand(0).getIndex(); return MI.getOperand(2).getReg(); } } return 0; } static SPCC::CondCodes GetOppositeBranchCondition(SPCC::CondCodes CC) { switch(CC) { case SPCC::ICC_A: return SPCC::ICC_N; case SPCC::ICC_N: return SPCC::ICC_A; case SPCC::ICC_NE: return SPCC::ICC_E; case SPCC::ICC_E: return SPCC::ICC_NE; case SPCC::ICC_G: return SPCC::ICC_LE; case SPCC::ICC_LE: return SPCC::ICC_G; case SPCC::ICC_GE: return SPCC::ICC_L; case SPCC::ICC_L: return SPCC::ICC_GE; case SPCC::ICC_GU: return SPCC::ICC_LEU; case SPCC::ICC_LEU: return SPCC::ICC_GU; case SPCC::ICC_CC: return SPCC::ICC_CS; case SPCC::ICC_CS: return SPCC::ICC_CC; case SPCC::ICC_POS: return SPCC::ICC_NEG; case SPCC::ICC_NEG: return SPCC::ICC_POS; case SPCC::ICC_VC: return SPCC::ICC_VS; case SPCC::ICC_VS: return SPCC::ICC_VC; case SPCC::FCC_A: return SPCC::FCC_N; case SPCC::FCC_N: return SPCC::FCC_A; case SPCC::FCC_U: return SPCC::FCC_O; case SPCC::FCC_O: return SPCC::FCC_U; case SPCC::FCC_G: return SPCC::FCC_ULE; case SPCC::FCC_LE: return SPCC::FCC_UG; case SPCC::FCC_UG: return SPCC::FCC_LE; case SPCC::FCC_ULE: return SPCC::FCC_G; case SPCC::FCC_L: return SPCC::FCC_UGE; case SPCC::FCC_GE: return SPCC::FCC_UL; case SPCC::FCC_UL: return SPCC::FCC_GE; case SPCC::FCC_UGE: return SPCC::FCC_L; case SPCC::FCC_LG: return SPCC::FCC_UE; case SPCC::FCC_UE: return SPCC::FCC_LG; case SPCC::FCC_NE: return SPCC::FCC_E; case SPCC::FCC_E: return SPCC::FCC_NE; case SPCC::CPCC_A: return SPCC::CPCC_N; case SPCC::CPCC_N: return SPCC::CPCC_A; case SPCC::CPCC_3: [[fallthrough]]; case SPCC::CPCC_2: [[fallthrough]]; case SPCC::CPCC_23: [[fallthrough]]; case SPCC::CPCC_1: [[fallthrough]]; case SPCC::CPCC_13: [[fallthrough]]; case SPCC::CPCC_12: [[fallthrough]]; case SPCC::CPCC_123: [[fallthrough]]; case SPCC::CPCC_0: [[fallthrough]]; case SPCC::CPCC_03: [[fallthrough]]; case SPCC::CPCC_02: [[fallthrough]]; case SPCC::CPCC_023: [[fallthrough]]; case SPCC::CPCC_01: [[fallthrough]]; case SPCC::CPCC_013: [[fallthrough]]; case SPCC::CPCC_012: // "Opposite" code is not meaningful, as we don't know // what the CoProc condition means here. The cond-code will // only be used in inline assembler, so this code should // not be reached in a normal compilation pass. llvm_unreachable("Meaningless inversion of co-processor cond code"); case SPCC::REG_BEGIN: llvm_unreachable("Use of reserved cond code"); case SPCC::REG_Z: return SPCC::REG_NZ; case SPCC::REG_LEZ: return SPCC::REG_GZ; case SPCC::REG_LZ: return SPCC::REG_GEZ; case SPCC::REG_NZ: return SPCC::REG_Z; case SPCC::REG_GZ: return SPCC::REG_LEZ; case SPCC::REG_GEZ: return SPCC::REG_LZ; } llvm_unreachable("Invalid cond code"); } static bool isUncondBranchOpcode(int Opc) { return Opc == SP::BA; } static bool isI32CondBranchOpcode(int Opc) { return Opc == SP::BCOND || Opc == SP::BPICC || Opc == SP::BPICCA || Opc == SP::BPICCNT || Opc == SP::BPICCANT; } static bool isI64CondBranchOpcode(int Opc) { return Opc == SP::BPXCC || Opc == SP::BPXCCA || Opc == SP::BPXCCNT || Opc == SP::BPXCCANT; } static bool isFCondBranchOpcode(int Opc) { return Opc == SP::FBCOND || Opc == SP::FBCONDA || Opc == SP::FBCOND_V9 || Opc == SP::FBCONDA_V9; } static bool isCondBranchOpcode(int Opc) { return isI32CondBranchOpcode(Opc) || isI64CondBranchOpcode(Opc) || isFCondBranchOpcode(Opc); } static bool isIndirectBranchOpcode(int Opc) { return Opc == SP::BINDrr || Opc == SP::BINDri; } static void parseCondBranch(MachineInstr *LastInst, MachineBasicBlock *&Target, SmallVectorImpl &Cond) { unsigned Opc = LastInst->getOpcode(); int64_t CC = LastInst->getOperand(1).getImm(); // Push the branch opcode into Cond too so later in insertBranch // it can use the information to emit the correct SPARC branch opcode. Cond.push_back(MachineOperand::CreateImm(Opc)); Cond.push_back(MachineOperand::CreateImm(CC)); Target = LastInst->getOperand(0).getMBB(); } MachineBasicBlock * SparcInstrInfo::getBranchDestBlock(const MachineInstr &MI) const { switch (MI.getOpcode()) { default: llvm_unreachable("unexpected opcode!"); case SP::BA: case SP::BCOND: case SP::BCONDA: case SP::FBCOND: case SP::FBCONDA: case SP::BPICC: case SP::BPICCA: case SP::BPICCNT: case SP::BPICCANT: case SP::BPXCC: case SP::BPXCCA: case SP::BPXCCNT: case SP::BPXCCANT: case SP::BPFCC: case SP::BPFCCA: case SP::BPFCCNT: case SP::BPFCCANT: case SP::FBCOND_V9: case SP::FBCONDA_V9: return MI.getOperand(0).getMBB(); } } bool SparcInstrInfo::analyzeBranch(MachineBasicBlock &MBB, MachineBasicBlock *&TBB, MachineBasicBlock *&FBB, SmallVectorImpl &Cond, bool AllowModify) const { MachineBasicBlock::iterator I = MBB.getLastNonDebugInstr(); if (I == MBB.end()) return false; if (!isUnpredicatedTerminator(*I)) return false; // Get the last instruction in the block. MachineInstr *LastInst = &*I; unsigned LastOpc = LastInst->getOpcode(); // If there is only one terminator instruction, process it. if (I == MBB.begin() || !isUnpredicatedTerminator(*--I)) { if (isUncondBranchOpcode(LastOpc)) { TBB = LastInst->getOperand(0).getMBB(); return false; } if (isCondBranchOpcode(LastOpc)) { // Block ends with fall-through condbranch. parseCondBranch(LastInst, TBB, Cond); return false; } return true; // Can't handle indirect branch. } // Get the instruction before it if it is a terminator. MachineInstr *SecondLastInst = &*I; unsigned SecondLastOpc = SecondLastInst->getOpcode(); // If AllowModify is true and the block ends with two or more unconditional // branches, delete all but the first unconditional branch. if (AllowModify && isUncondBranchOpcode(LastOpc)) { while (isUncondBranchOpcode(SecondLastOpc)) { LastInst->eraseFromParent(); LastInst = SecondLastInst; LastOpc = LastInst->getOpcode(); if (I == MBB.begin() || !isUnpredicatedTerminator(*--I)) { // Return now the only terminator is an unconditional branch. TBB = LastInst->getOperand(0).getMBB(); return false; } else { SecondLastInst = &*I; SecondLastOpc = SecondLastInst->getOpcode(); } } } // If there are three terminators, we don't know what sort of block this is. if (SecondLastInst && I != MBB.begin() && isUnpredicatedTerminator(*--I)) return true; // If the block ends with a B and a Bcc, handle it. if (isCondBranchOpcode(SecondLastOpc) && isUncondBranchOpcode(LastOpc)) { parseCondBranch(SecondLastInst, TBB, Cond); FBB = LastInst->getOperand(0).getMBB(); return false; } // If the block ends with two unconditional branches, handle it. The second // one is not executed. if (isUncondBranchOpcode(SecondLastOpc) && isUncondBranchOpcode(LastOpc)) { TBB = SecondLastInst->getOperand(0).getMBB(); return false; } // ...likewise if it ends with an indirect branch followed by an unconditional // branch. if (isIndirectBranchOpcode(SecondLastOpc) && isUncondBranchOpcode(LastOpc)) { I = LastInst; if (AllowModify) I->eraseFromParent(); return true; } // Otherwise, can't handle this. return true; } unsigned SparcInstrInfo::insertBranch(MachineBasicBlock &MBB, MachineBasicBlock *TBB, MachineBasicBlock *FBB, ArrayRef Cond, const DebugLoc &DL, int *BytesAdded) const { assert(TBB && "insertBranch must not be told to insert a fallthrough"); assert((Cond.size() <= 2) && "Sparc branch conditions should have at most two components!"); if (Cond.empty()) { assert(!FBB && "Unconditional branch with multiple successors!"); BuildMI(&MBB, DL, get(SP::BA)).addMBB(TBB); if (BytesAdded) *BytesAdded = 8; return 1; } // Conditional branch unsigned Opc = Cond[0].getImm(); unsigned CC = Cond[1].getImm(); BuildMI(&MBB, DL, get(Opc)).addMBB(TBB).addImm(CC); if (!FBB) { if (BytesAdded) *BytesAdded = 8; return 1; } BuildMI(&MBB, DL, get(SP::BA)).addMBB(FBB); if (BytesAdded) *BytesAdded = 16; return 2; } unsigned SparcInstrInfo::removeBranch(MachineBasicBlock &MBB, int *BytesRemoved) const { MachineBasicBlock::iterator I = MBB.end(); unsigned Count = 0; int Removed = 0; while (I != MBB.begin()) { --I; if (I->isDebugInstr()) continue; if (!isCondBranchOpcode(I->getOpcode()) && !isUncondBranchOpcode(I->getOpcode())) break; // Not a branch Removed += getInstSizeInBytes(*I); I->eraseFromParent(); I = MBB.end(); ++Count; } if (BytesRemoved) *BytesRemoved = Removed; return Count; } bool SparcInstrInfo::reverseBranchCondition( SmallVectorImpl &Cond) const { assert(Cond.size() <= 2); SPCC::CondCodes CC = static_cast(Cond[1].getImm()); Cond[1].setImm(GetOppositeBranchCondition(CC)); return false; } bool SparcInstrInfo::isBranchOffsetInRange(unsigned BranchOpc, int64_t Offset) const { assert((Offset & 0b11) == 0 && "Malformed branch offset"); switch (BranchOpc) { case SP::BA: case SP::BCOND: case SP::BCONDA: case SP::FBCOND: case SP::FBCONDA: return isIntN(22, Offset >> 2); case SP::BPICC: case SP::BPICCA: case SP::BPICCNT: case SP::BPICCANT: case SP::BPXCC: case SP::BPXCCA: case SP::BPXCCNT: case SP::BPXCCANT: case SP::BPFCC: case SP::BPFCCA: case SP::BPFCCNT: case SP::BPFCCANT: case SP::FBCOND_V9: case SP::FBCONDA_V9: return isIntN(BPccDisplacementBits, Offset >> 2); } llvm_unreachable("Unknown branch instruction!"); } void SparcInstrInfo::copyPhysReg(MachineBasicBlock &MBB, MachineBasicBlock::iterator I, const DebugLoc &DL, MCRegister DestReg, MCRegister SrcReg, bool KillSrc) const { unsigned numSubRegs = 0; unsigned movOpc = 0; const unsigned *subRegIdx = nullptr; bool ExtraG0 = false; const unsigned DW_SubRegsIdx[] = { SP::sub_even, SP::sub_odd }; const unsigned DFP_FP_SubRegsIdx[] = { SP::sub_even, SP::sub_odd }; const unsigned QFP_DFP_SubRegsIdx[] = { SP::sub_even64, SP::sub_odd64 }; const unsigned QFP_FP_SubRegsIdx[] = { SP::sub_even, SP::sub_odd, SP::sub_odd64_then_sub_even, SP::sub_odd64_then_sub_odd }; if (SP::IntRegsRegClass.contains(DestReg, SrcReg)) BuildMI(MBB, I, DL, get(SP::ORrr), DestReg).addReg(SP::G0) .addReg(SrcReg, getKillRegState(KillSrc)); else if (SP::IntPairRegClass.contains(DestReg, SrcReg)) { subRegIdx = DW_SubRegsIdx; numSubRegs = 2; movOpc = SP::ORrr; ExtraG0 = true; } else if (SP::FPRegsRegClass.contains(DestReg, SrcReg)) BuildMI(MBB, I, DL, get(SP::FMOVS), DestReg) .addReg(SrcReg, getKillRegState(KillSrc)); else if (SP::DFPRegsRegClass.contains(DestReg, SrcReg)) { if (Subtarget.isV9()) { BuildMI(MBB, I, DL, get(SP::FMOVD), DestReg) .addReg(SrcReg, getKillRegState(KillSrc)); } else { // Use two FMOVS instructions. subRegIdx = DFP_FP_SubRegsIdx; numSubRegs = 2; movOpc = SP::FMOVS; } } else if (SP::QFPRegsRegClass.contains(DestReg, SrcReg)) { if (Subtarget.isV9()) { if (Subtarget.hasHardQuad()) { BuildMI(MBB, I, DL, get(SP::FMOVQ), DestReg) .addReg(SrcReg, getKillRegState(KillSrc)); } else { // Use two FMOVD instructions. subRegIdx = QFP_DFP_SubRegsIdx; numSubRegs = 2; movOpc = SP::FMOVD; } } else { // Use four FMOVS instructions. subRegIdx = QFP_FP_SubRegsIdx; numSubRegs = 4; movOpc = SP::FMOVS; } } else if (SP::ASRRegsRegClass.contains(DestReg) && SP::IntRegsRegClass.contains(SrcReg)) { BuildMI(MBB, I, DL, get(SP::WRASRrr), DestReg) .addReg(SP::G0) .addReg(SrcReg, getKillRegState(KillSrc)); } else if (SP::IntRegsRegClass.contains(DestReg) && SP::ASRRegsRegClass.contains(SrcReg)) { BuildMI(MBB, I, DL, get(SP::RDASR), DestReg) .addReg(SrcReg, getKillRegState(KillSrc)); } else llvm_unreachable("Impossible reg-to-reg copy"); if (numSubRegs == 0 || subRegIdx == nullptr || movOpc == 0) return; const TargetRegisterInfo *TRI = &getRegisterInfo(); MachineInstr *MovMI = nullptr; for (unsigned i = 0; i != numSubRegs; ++i) { Register Dst = TRI->getSubReg(DestReg, subRegIdx[i]); Register Src = TRI->getSubReg(SrcReg, subRegIdx[i]); assert(Dst && Src && "Bad sub-register"); MachineInstrBuilder MIB = BuildMI(MBB, I, DL, get(movOpc), Dst); if (ExtraG0) MIB.addReg(SP::G0); MIB.addReg(Src); MovMI = MIB.getInstr(); } // Add implicit super-register defs and kills to the last MovMI. MovMI->addRegisterDefined(DestReg, TRI); if (KillSrc) MovMI->addRegisterKilled(SrcReg, TRI); } void SparcInstrInfo::storeRegToStackSlot(MachineBasicBlock &MBB, MachineBasicBlock::iterator I, Register SrcReg, bool isKill, int FI, const TargetRegisterClass *RC, const TargetRegisterInfo *TRI, Register VReg) const { DebugLoc DL; if (I != MBB.end()) DL = I->getDebugLoc(); MachineFunction *MF = MBB.getParent(); const MachineFrameInfo &MFI = MF->getFrameInfo(); MachineMemOperand *MMO = MF->getMachineMemOperand( MachinePointerInfo::getFixedStack(*MF, FI), MachineMemOperand::MOStore, MFI.getObjectSize(FI), MFI.getObjectAlign(FI)); // On the order of operands here: think "[FrameIdx + 0] = SrcReg". if (RC == &SP::I64RegsRegClass) BuildMI(MBB, I, DL, get(SP::STXri)).addFrameIndex(FI).addImm(0) .addReg(SrcReg, getKillRegState(isKill)).addMemOperand(MMO); else if (RC == &SP::IntRegsRegClass) BuildMI(MBB, I, DL, get(SP::STri)).addFrameIndex(FI).addImm(0) .addReg(SrcReg, getKillRegState(isKill)).addMemOperand(MMO); else if (RC == &SP::IntPairRegClass) BuildMI(MBB, I, DL, get(SP::STDri)).addFrameIndex(FI).addImm(0) .addReg(SrcReg, getKillRegState(isKill)).addMemOperand(MMO); else if (RC == &SP::FPRegsRegClass) BuildMI(MBB, I, DL, get(SP::STFri)).addFrameIndex(FI).addImm(0) .addReg(SrcReg, getKillRegState(isKill)).addMemOperand(MMO); else if (SP::DFPRegsRegClass.hasSubClassEq(RC)) BuildMI(MBB, I, DL, get(SP::STDFri)).addFrameIndex(FI).addImm(0) .addReg(SrcReg, getKillRegState(isKill)).addMemOperand(MMO); else if (SP::QFPRegsRegClass.hasSubClassEq(RC)) // Use STQFri irrespective of its legality. If STQ is not legal, it will be // lowered into two STDs in eliminateFrameIndex. BuildMI(MBB, I, DL, get(SP::STQFri)).addFrameIndex(FI).addImm(0) .addReg(SrcReg, getKillRegState(isKill)).addMemOperand(MMO); else llvm_unreachable("Can't store this register to stack slot"); } void SparcInstrInfo::loadRegFromStackSlot(MachineBasicBlock &MBB, MachineBasicBlock::iterator I, Register DestReg, int FI, const TargetRegisterClass *RC, const TargetRegisterInfo *TRI, Register VReg) const { DebugLoc DL; if (I != MBB.end()) DL = I->getDebugLoc(); MachineFunction *MF = MBB.getParent(); const MachineFrameInfo &MFI = MF->getFrameInfo(); MachineMemOperand *MMO = MF->getMachineMemOperand( MachinePointerInfo::getFixedStack(*MF, FI), MachineMemOperand::MOLoad, MFI.getObjectSize(FI), MFI.getObjectAlign(FI)); if (RC == &SP::I64RegsRegClass) BuildMI(MBB, I, DL, get(SP::LDXri), DestReg).addFrameIndex(FI).addImm(0) .addMemOperand(MMO); else if (RC == &SP::IntRegsRegClass) BuildMI(MBB, I, DL, get(SP::LDri), DestReg).addFrameIndex(FI).addImm(0) .addMemOperand(MMO); else if (RC == &SP::IntPairRegClass) BuildMI(MBB, I, DL, get(SP::LDDri), DestReg).addFrameIndex(FI).addImm(0) .addMemOperand(MMO); else if (RC == &SP::FPRegsRegClass) BuildMI(MBB, I, DL, get(SP::LDFri), DestReg).addFrameIndex(FI).addImm(0) .addMemOperand(MMO); else if (SP::DFPRegsRegClass.hasSubClassEq(RC)) BuildMI(MBB, I, DL, get(SP::LDDFri), DestReg).addFrameIndex(FI).addImm(0) .addMemOperand(MMO); else if (SP::QFPRegsRegClass.hasSubClassEq(RC)) // Use LDQFri irrespective of its legality. If LDQ is not legal, it will be // lowered into two LDDs in eliminateFrameIndex. BuildMI(MBB, I, DL, get(SP::LDQFri), DestReg).addFrameIndex(FI).addImm(0) .addMemOperand(MMO); else llvm_unreachable("Can't load this register from stack slot"); } Register SparcInstrInfo::getGlobalBaseReg(MachineFunction *MF) const { SparcMachineFunctionInfo *SparcFI = MF->getInfo(); Register GlobalBaseReg = SparcFI->getGlobalBaseReg(); if (GlobalBaseReg) return GlobalBaseReg; // Insert the set of GlobalBaseReg into the first MBB of the function MachineBasicBlock &FirstMBB = MF->front(); MachineBasicBlock::iterator MBBI = FirstMBB.begin(); MachineRegisterInfo &RegInfo = MF->getRegInfo(); const TargetRegisterClass *PtrRC = Subtarget.is64Bit() ? &SP::I64RegsRegClass : &SP::IntRegsRegClass; GlobalBaseReg = RegInfo.createVirtualRegister(PtrRC); DebugLoc dl; BuildMI(FirstMBB, MBBI, dl, get(SP::GETPCX), GlobalBaseReg); SparcFI->setGlobalBaseReg(GlobalBaseReg); return GlobalBaseReg; } unsigned SparcInstrInfo::getInstSizeInBytes(const MachineInstr &MI) const { unsigned Opcode = MI.getOpcode(); if (MI.isInlineAsm()) { const MachineFunction *MF = MI.getParent()->getParent(); const char *AsmStr = MI.getOperand(0).getSymbolName(); return getInlineAsmLength(AsmStr, *MF->getTarget().getMCAsmInfo()); } // If the instruction has a delay slot, be conservative and also include // it for sizing purposes. This is done so that the BranchRelaxation pass // will not mistakenly mark out-of-range branches as in-range. if (MI.hasDelaySlot()) return get(Opcode).getSize() * 2; return get(Opcode).getSize(); } bool SparcInstrInfo::expandPostRAPseudo(MachineInstr &MI) const { switch (MI.getOpcode()) { case TargetOpcode::LOAD_STACK_GUARD: { assert(Subtarget.isTargetLinux() && "Only Linux target is expected to contain LOAD_STACK_GUARD"); // offsetof(tcbhead_t, stack_guard) from sysdeps/sparc/nptl/tls.h in glibc. const int64_t Offset = Subtarget.is64Bit() ? 0x28 : 0x14; MI.setDesc(get(Subtarget.is64Bit() ? SP::LDXri : SP::LDri)); MachineInstrBuilder(*MI.getParent()->getParent(), MI) .addReg(SP::G7) .addImm(Offset); return true; } } return false; }