//===- X86_64.cpp ---------------------------------------------------------===// // // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. // See https://llvm.org/LICENSE.txt for license information. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // //===----------------------------------------------------------------------===// #include "InputFiles.h" #include "Symbols.h" #include "SyntheticSections.h" #include "Target.h" #include "lld/Common/ErrorHandler.h" #include "mach-o/compact_unwind_encoding.h" #include "llvm/BinaryFormat/MachO.h" #include "llvm/Support/Endian.h" using namespace llvm::MachO; using namespace llvm::support::endian; using namespace lld; using namespace lld::macho; namespace { struct X86_64 : TargetInfo { X86_64(); int64_t getEmbeddedAddend(MemoryBufferRef, uint64_t offset, const relocation_info) const override; void relocateOne(uint8_t *loc, const Reloc &, uint64_t va, uint64_t relocVA) const override; void writeStub(uint8_t *buf, const Symbol &, uint64_t pointerVA) const override; void writeStubHelperHeader(uint8_t *buf) const override; void writeStubHelperEntry(uint8_t *buf, const Symbol &, uint64_t entryAddr) const override; void writeObjCMsgSendStub(uint8_t *buf, Symbol *sym, uint64_t stubsAddr, uint64_t stubOffset, uint64_t selrefsVA, uint64_t selectorIndex, uint64_t gotAddr, uint64_t msgSendIndex) const override; void relaxGotLoad(uint8_t *loc, uint8_t type) const override; uint64_t getPageSize() const override { return 4 * 1024; } void handleDtraceReloc(const Symbol *sym, const Reloc &r, uint8_t *loc) const override; }; } // namespace static constexpr std::array relocAttrsArray{{ #define B(x) RelocAttrBits::x {"UNSIGNED", B(UNSIGNED) | B(ABSOLUTE) | B(EXTERN) | B(LOCAL) | B(BYTE4) | B(BYTE8)}, {"SIGNED", B(PCREL) | B(EXTERN) | B(LOCAL) | B(BYTE4)}, {"BRANCH", B(PCREL) | B(EXTERN) | B(BRANCH) | B(BYTE4)}, {"GOT_LOAD", B(PCREL) | B(EXTERN) | B(GOT) | B(LOAD) | B(BYTE4)}, {"GOT", B(PCREL) | B(EXTERN) | B(GOT) | B(POINTER) | B(BYTE4)}, {"SUBTRACTOR", B(SUBTRAHEND) | B(EXTERN) | B(BYTE4) | B(BYTE8)}, {"SIGNED_1", B(PCREL) | B(EXTERN) | B(LOCAL) | B(BYTE4)}, {"SIGNED_2", B(PCREL) | B(EXTERN) | B(LOCAL) | B(BYTE4)}, {"SIGNED_4", B(PCREL) | B(EXTERN) | B(LOCAL) | B(BYTE4)}, {"TLV", B(PCREL) | B(EXTERN) | B(TLV) | B(LOAD) | B(BYTE4)}, #undef B }}; static int pcrelOffset(uint8_t type) { switch (type) { case X86_64_RELOC_SIGNED_1: return 1; case X86_64_RELOC_SIGNED_2: return 2; case X86_64_RELOC_SIGNED_4: return 4; default: return 0; } } int64_t X86_64::getEmbeddedAddend(MemoryBufferRef mb, uint64_t offset, relocation_info rel) const { auto *buf = reinterpret_cast(mb.getBufferStart()); const uint8_t *loc = buf + offset + rel.r_address; switch (rel.r_length) { case 2: return static_cast(read32le(loc)) + pcrelOffset(rel.r_type); case 3: return read64le(loc) + pcrelOffset(rel.r_type); default: llvm_unreachable("invalid r_length"); } } void X86_64::relocateOne(uint8_t *loc, const Reloc &r, uint64_t value, uint64_t relocVA) const { if (r.pcrel) { uint64_t pc = relocVA + 4 + pcrelOffset(r.type); value -= pc; } switch (r.length) { case 2: if (r.type == X86_64_RELOC_UNSIGNED) checkUInt(loc, r, value, 32); else checkInt(loc, r, value, 32); write32le(loc, value); break; case 3: write64le(loc, value); break; default: llvm_unreachable("invalid r_length"); } } // The following methods emit a number of assembly sequences with RIP-relative // addressing. Note that RIP-relative addressing on X86-64 has the RIP pointing // to the next instruction, not the current instruction, so we always have to // account for the current instruction's size when calculating offsets. // writeRipRelative helps with that. // // bufAddr: The virtual address corresponding to buf[0]. // bufOff: The offset within buf of the next instruction. // destAddr: The destination address that the current instruction references. static void writeRipRelative(SymbolDiagnostic d, uint8_t *buf, uint64_t bufAddr, uint64_t bufOff, uint64_t destAddr) { uint64_t rip = bufAddr + bufOff; checkInt(buf, d, destAddr - rip, 32); // For the instructions we care about, the RIP-relative address is always // stored in the last 4 bytes of the instruction. write32le(buf + bufOff - 4, destAddr - rip); } static constexpr uint8_t stub[] = { 0xff, 0x25, 0, 0, 0, 0, // jmpq *__la_symbol_ptr(%rip) }; void X86_64::writeStub(uint8_t *buf, const Symbol &sym, uint64_t pointerVA) const { memcpy(buf, stub, 2); // just copy the two nonzero bytes uint64_t stubAddr = in.stubs->addr + sym.stubsIndex * sizeof(stub); writeRipRelative({&sym, "stub"}, buf, stubAddr, sizeof(stub), pointerVA); } static constexpr uint8_t stubHelperHeader[] = { 0x4c, 0x8d, 0x1d, 0, 0, 0, 0, // 0x0: leaq ImageLoaderCache(%rip), %r11 0x41, 0x53, // 0x7: pushq %r11 0xff, 0x25, 0, 0, 0, 0, // 0x9: jmpq *dyld_stub_binder@GOT(%rip) 0x90, // 0xf: nop }; void X86_64::writeStubHelperHeader(uint8_t *buf) const { memcpy(buf, stubHelperHeader, sizeof(stubHelperHeader)); SymbolDiagnostic d = {nullptr, "stub helper header"}; writeRipRelative(d, buf, in.stubHelper->addr, 7, in.imageLoaderCache->getVA()); writeRipRelative(d, buf, in.stubHelper->addr, 0xf, in.got->addr + in.stubHelper->stubBinder->gotIndex * LP64::wordSize); } static constexpr uint8_t stubHelperEntry[] = { 0x68, 0, 0, 0, 0, // 0x0: pushq 0xe9, 0, 0, 0, 0, // 0x5: jmp <__stub_helper> }; void X86_64::writeStubHelperEntry(uint8_t *buf, const Symbol &sym, uint64_t entryAddr) const { memcpy(buf, stubHelperEntry, sizeof(stubHelperEntry)); write32le(buf + 1, sym.lazyBindOffset); writeRipRelative({&sym, "stub helper"}, buf, entryAddr, sizeof(stubHelperEntry), in.stubHelper->addr); } static constexpr uint8_t objcStubsFastCode[] = { 0x48, 0x8b, 0x35, 0, 0, 0, 0, // 0x0: movq selrefs@selector(%rip), %rsi 0xff, 0x25, 0, 0, 0, 0, // 0x7: jmpq *_objc_msgSend@GOT(%rip) }; void X86_64::writeObjCMsgSendStub(uint8_t *buf, Symbol *sym, uint64_t stubsAddr, uint64_t stubOffset, uint64_t selrefsVA, uint64_t selectorIndex, uint64_t gotAddr, uint64_t msgSendIndex) const { memcpy(buf, objcStubsFastCode, sizeof(objcStubsFastCode)); SymbolDiagnostic d = {sym, sym->getName()}; uint64_t stubAddr = stubsAddr + stubOffset; writeRipRelative(d, buf, stubAddr, 7, selrefsVA + selectorIndex * LP64::wordSize); writeRipRelative(d, buf, stubAddr, 0xd, gotAddr + msgSendIndex * LP64::wordSize); } void X86_64::relaxGotLoad(uint8_t *loc, uint8_t type) const { // Convert MOVQ to LEAQ if (loc[-2] != 0x8b) error(getRelocAttrs(type).name + " reloc requires MOVQ instruction"); loc[-2] = 0x8d; } X86_64::X86_64() : TargetInfo(LP64()) { cpuType = CPU_TYPE_X86_64; cpuSubtype = CPU_SUBTYPE_X86_64_ALL; modeDwarfEncoding = UNWIND_X86_MODE_DWARF; subtractorRelocType = X86_64_RELOC_SUBTRACTOR; unsignedRelocType = X86_64_RELOC_UNSIGNED; stubSize = sizeof(stub); stubHelperHeaderSize = sizeof(stubHelperHeader); stubHelperEntrySize = sizeof(stubHelperEntry); objcStubsFastSize = sizeof(objcStubsFastCode); objcStubsAlignment = 1; relocAttrs = {relocAttrsArray.data(), relocAttrsArray.size()}; } TargetInfo *macho::createX86_64TargetInfo() { static X86_64 t; return &t; } void X86_64::handleDtraceReloc(const Symbol *sym, const Reloc &r, uint8_t *loc) const { assert(r.type == X86_64_RELOC_BRANCH); if (config->outputType == MH_OBJECT) return; if (sym->getName().startswith("___dtrace_probe")) { // change call site to a NOP loc[-1] = 0x90; write32le(loc, 0x00401F0F); } else if (sym->getName().startswith("___dtrace_isenabled")) { // change call site to a clear eax loc[-1] = 0x33; write32le(loc, 0x909090C0); } else { error("Unrecognized dtrace symbol prefix: " + toString(*sym)); } }